Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(3): 1423-1440, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38197317

RESUMO

Plastic waste has emerged as a serious issue due to its impact on environmental degradation and resource scarcity. Plastic recycling, especially of halogen-containing plastics, presents challenges due to potential secondary pollution and lower-value implementations. Chemical recycling via pyrolysis is the most versatile and robust approach for combating plastic waste. In this Review, we present recent advancements in halogen-plastic pyrolysis for resource utilization and the potential pathways from "reducing to recycling to upcycling" halogens. We emphasize the advanced management of halogen-plastics through copyrolysis with solid wastes (waste polymers, biomass, coal, etc.), which is an efficient method for dealing with mixed wastes to obtain high-value products while reducing undesirable substances. Innovations in catalyst design and reaction configurations for catalytic pyrolysis are comprehensively evaluated. In particular, a tandem catalysis system is a promising route for halogen removal and selective conversion of targeted products. Furthermore, we propose novel insights regarding the utilization and upcycling of halogens from halogen-plastics. This includes the preparation of halogen-based sorbents for elemental mercury removal, the halogenation-vaporization process for metal recovery, and the development of halogen-doped functional materials for new materials and energy applications. The reutilization of halogens facilitates the upcycling of halogen-plastics, but many efforts are needed for mutually beneficial outcomes. Overall, future investigations in the development of copyrolysis and catalyst-driven technologies for upcycling halogen-plastics are highlighted.


Assuntos
Halogênios , Plásticos , Plásticos/química , Pirólise , Reciclagem , Resíduos Sólidos
2.
Waste Manag ; 139: 39-49, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34933245

RESUMO

In this work, ReaxFF molecular simulations were performed to study the pyrolysis behavior of chemical cross-linked natural rubber (NR) under non-isothermal and isothermal conditions. Three different sulfur vulcanized NR models were established and simulated to study the effect of inner sulfur structure on NR decomposition behavior and sulfur evolution in comparison with carbon cross-linked structure. To understand the NR decomposition with temperatures, the non-isothermal simulations were performed between 300 and 3800 K at a 50 K ps-1 heating rate. The results reveal that the decomposition process can be classified into four stages: 1) Structure adjustment; 2) Decomposition of the main carbon chains; 3) Secondary decomposition of heavy tar; and 4) Deep decomposition of light tar. Based on the results of non-isothermal pyrolysis, four different temperatures were selected for the isothermal simulations. Compared with carbon cross-linked NR, sulfur cross-linked structures facilitate the generation of C2H4 and C4H6 in the gas phase at low temperatures. At higher temperatures, more heavy tar is generated. Regarding the sulfur evolution, the sulfur-containing products mainly include H2S, thiophene, sulfide, and thiol. The distribution of sulfur-containing products with temperatures follows the similar pattern with the product distribution of main compounds. At higher temperatures, most sulfur exists in the form of thiophene compounds. In particular, the structure with single CS cross-links facilitates the generation of H2S at low temperatures. The results of this work provide insight into the sulfur transformation and pyrolysis behavior of vulcanized NR.


Assuntos
Pirólise , Borracha , Simulação de Dinâmica Molecular , Enxofre , Temperatura
3.
Chemosphere ; 283: 131252, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34153921

RESUMO

In this work, the pyrolysis of natural rubber (NR) under N2 and H2S atmosphere was performed to illustrate the possible effect of H2S on NR decomposition with and without catalysts. A molecular dynamics simulation based on reactive force field (ReaxFF) was also conducted to understand the interaction mechanism between H2S and intermediates from NR decomposition. Furthermore, the catalytic decomposition of NR under H2S atmosphere and the adsorption characteristics of H2S by zeolites alone were also carried out to investigate the effect of catalysts on sulfur behavior and the reversed effect of H2S on catalyst activity. This work revealed that the introduction of H2S can influence the yields of pyrolytic oil and gas, as well as composition of the oil. Combining experimental and simulation studies, H2S can interact with intermediates from NR decomposition forming sulfur-containing substances in pyrolytic oil. The H2S adsorption experiments by various catalysts revealed that catalysts can chemically adsorb H2S. The introduction of Zn can promote the adsorption ability by reacting with sulfur-containing substances to generate ZnS, with the desulfurization effect following the order of 3Zn/ZSM5 > ZSM5 > 3ZnO/ZSM5.


Assuntos
Borracha , Zeolitas , Catálise , Pirólise , Enxofre
4.
Chemosphere ; 248: 125964, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32004884

RESUMO

A computer casing plastic waste containing brominated flame retardants (BFRs) was pyrolyzed in a two-stage vertical quartz tube reactor using iron and nickel metals modified MCM-41 catalysts. Various catalysts with different ratios of Fe and Ni were prepared and utilized to study their catalytic performance. At the presence of 20%Ni/MCM-41 catalyst, the pyrolytic yield of oil and gas reached maximum values of 49.9 wt% and 13.8 wt% respectively. The co-existence of Fe and Ni showed synergistic effect on oil composition by promoting the formation of valuable single ring hydrocarbons. With regard to the 15%Fe-5%Ni/MCM-41, 10%Fe-10%Ni/MCM-41 and 5%Fe-15%Ni/MCM-41 catalysts, the production of single ring hydrocarbons were 64.58%, 65.93% and 64.74% respectively. The bimetallic catalysts also exhibited remarkable effect on eliminating bromine from pyrolytic oil. At the presence of Fe-Ni/MCM-41, the bromine in pyrolytic oil was reduced to below 4 wt% compared with 10 wt% without catalyst. Higher amounts of Fe in the catalyst is beneficial for the debromination efficiency. The debromination process by the Fe-Ni/MCM-41 may be realized by these different mechanisms: catalytic cracking of organobromines, reaction of loaded metal oxides with HBr/SbBr3, and deposition of organobromines on the surface of catalyst.


Assuntos
Plásticos/análise , Eliminação de Resíduos/métodos , Bromo , Catálise , Ferro , Níquel , Óxidos , Pirólise , Dióxido de Silício
5.
Waste Manag ; 48: 300-314, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26687228

RESUMO

This review summarized various chemical recycling methods for PVC, such as pyrolysis, catalytic dechlorination and hydrothermal treatment, with a view to solving the problem of energy crisis and the impact of environmental degradation of PVC. Emphasis was paid on the recent progress on the pyrolysis of PVC, including co-pyrolysis of PVC with biomass/coal and other plastics, catalytic dechlorination of raw PVC or Cl-containing oil and hydrothermal treatment using subcritical and supercritical water. Understanding the advantage and disadvantage of these treatment methods can be beneficial for treating PVC properly. The dehydrochlorination of PVC mainly happed at low temperature of 250-320°C. The process of PVC dehydrochlorination can catalyze and accelerate the biomass pyrolysis. The intermediates from dehydrochlorination stage of PVC can increase char yield of co-pyrolysis of PVC with PP/PE/PS. For the catalytic degradation and dechlorination of PVC, metal oxides catalysts mainly acted as adsorbents for the evolved HCl or as inhibitors of HCl formation depending on their basicity, while zeolites and noble metal catalysts can produce lighter oil, depending the total number of acid sites and the number of accessible acidic sites. For hydrothermal treatment, PVC decomposed through three stages. In the first region (T<250°C), PVC went through dehydrochlorination to form polyene; in the second region (250°C

Assuntos
Cloreto de Polivinila , Reciclagem/métodos , Eliminação de Resíduos/métodos , Biomassa , Catálise , Carvão Mineral , Cloreto de Polivinila/química , Temperatura
6.
Waste Manag ; 33(2): 462-73, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22951495

RESUMO

Plastics from waste electrical and electronic equipment (WEEE) have been an important environmental problem because these plastics commonly contain toxic halogenated flame retardants which may cause serious environmental pollution, especially the formation of carcinogenic substances polybrominated dibenzo dioxins/furans (PBDD/Fs), during treat process of these plastics. Pyrolysis has been proposed as a viable processing route for recycling the organic compounds in WEEE plastics into fuels and chemical feedstock. However, dehalogenation procedures are also necessary during treat process, because the oils collected in single pyrolysis process may contain numerous halogenated organic compounds, which would detrimentally impact the reuse of these pyrolysis oils. Currently, dehalogenation has become a significant topic in recycling of WEEE plastics by pyrolysis. In order to fulfill the better resource utilization of the WEEE plastics, the compositions, characteristics and dehalogenation methods during the pyrolysis recycling process of WEEE plastics were reviewed in this paper. Dehalogenation and the decomposition or pyrolysis of WEEE plastics can be carried out simultaneously or successively. It could be 'dehalogenating prior to pyrolysing plastics', 'performing dehalogenation and pyrolysis at the same time' or 'pyrolysing plastics first then upgrading pyrolysis oils'. The first strategy essentially is the two-stage pyrolysis with the release of halogen hydrides at low pyrolysis temperature region which is separate from the decomposition of polymer matrixes, thus obtaining halogenated free oil products. The second strategy is the most common method. Zeolite or other type of catalyst can be used in the pyrolysis process for removing organohalogens. The third strategy separate pyrolysis and dehalogenation of WEEE plastics, which can, to some degree, avoid the problem of oil value decline due to the use of catalyst, but obviously, this strategy may increase the cost of whole recycling process.


Assuntos
Resíduo Eletrônico/análise , Incineração/métodos , Plásticos/química , Reciclagem/métodos , Incineração/economia , Reciclagem/economia , Zeolitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA