Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Inorg Chem ; 61(51): 21157-21168, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36520141

RESUMO

Treatment of sulfur dots with polyethylene glycol (PEG) has been an efficient way to achieve a high luminescence quantum yield, and such a PEG-related quantum dot (QD)-synthesis strategy has been well documented. However, the polymeric insulating capping layer acting as the "thick shell" will significantly slow down the electron-transfer efficiency and severely hamper its practical application in an optoelectric field. Especially, the employment of synthetic polymers with long alkyl chains or large molecular weights may lead to structural complexity or even unexpected changes of physical characteristics for QDs. Therefore, in sulfur dot preparation, it is a breakthrough to use short-chain molecular species to replace PEG for better control and reproducibility. In this article, a solvent-type passivation (STP) strategy has been reported, and no PEG or any other capping agent is required. The main role of the solvent, ethanol, is to directly react with NaOH, and the generated sodium ethoxide passivates the surface defects. The afforded STP-enhanced emission sulfur dots (STPEE-SDs) possess not only the self-quenching-resistant feature in the solid state but also the extension of fluorescence band toward the wavelength as long as 645 nm. The realization of sulfur dot emission in the deep-red region with a decent yield (8.7%) has never been reported. Moreover, a super large Stokes shift (300 nm, λex = 345 nm, λem = 645 nm) and a much longer decay lifetime (109 µs) have been found, and such values can facilitate to suppress the negative influence from background signals. Density functional theory demonstrates that the surface passivation via sodium ethoxide is dynamically favorable, and the spectroscopic insights into emission behavior could be derived from the passivation effect of the sulfur vacancy as well as the charge-transfer process dominated by the highly electronegative ethoxide layer.


Assuntos
Pontos Quânticos , Solventes , Reprodutibilidade dos Testes , Pontos Quânticos/química , Polietilenoglicóis/química , Polímeros , Enxofre
2.
J Mater Sci Mater Med ; 32(2): 20, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33638700

RESUMO

Arguments regarding the biocompatibility of graphene-based materials (GBMs) have never ceased. Particularly, the genotoxicity (e.g., DNA damage) of GBMs has been considered the greatest risk to healthy cells. Detailed genotoxicity studies of GBMs are necessary and essential. Herein, we present our recent studies on the genotoxicity of most widely used GBMs such as graphene oxide (GO) and the chemically reduced graphene oxide (RGO) toward human retinal pigment epithelium (RPE) cells. The genotoxicity of GO and RGOs against ARPE-19 (a typical RPE cell line) cells was investigated using the alkaline comet assay, the expression level of phosphorylated p53 determined via Western blots, and the release level of reactive oxygen species (ROS). Our results suggested that both GO and RGOs induced ROS-dependent DNA damage. However, the DNA damage was enhanced following the reduction of the saturated C-O bonds in GO, suggesting that surface oxygen-containing groups played essential roles in the reduced genotoxicity of graphene and had the potential possibility to reduce the toxicity of GBMs via chemical modification.


Assuntos
Dano ao DNA , Grafite/toxicidade , Oxigênio/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Grafite/química , Humanos , Teste de Materiais , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/patologia , Análise Espectral
3.
Chemistry ; 26(11): 2470-2477, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31912555

RESUMO

Multidrug resistance (MDR) is regarded as a main obstacle for effective chemotherapy, and P-glycoprotein (P-gp)-mediated drug efflux has been demonstrated to be the key factor responsible for MDR. In this study, a novel pH-responsive hybrid drug delivery system was developed by conjugating d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), a kind of P-gp inhibitor, on the surface of laponite nanodisks to overcome MDR. The prepared LM-TPGS display excellent colloidal stability, a high encapsulation efficiency of doxorubicin (DOX), and a pH-responsive drug release profile. In vitro experiments verified that LM-TPGS/DOX could exhibit significantly enhanced therapeutic efficacy in treating DOX-resistant breast cancer cells (MCF-7/ADR) through inhibiting the activity of P-gp-mediated drug efflux and effectively accumulating DOX within cancer cells. In vivo results revealed that LM-TPGS/DOX outstandingly suppressed MCF-7/ADR tumors with low side effects. Therefore, the high drug payload, enhanced inhibition efficacy to drug-resistant cells, and low side effects make the LM-TPGS/DOX a promising nanoplatform to reverse MDR for effective chemotherapy.


Assuntos
Antibióticos Antineoplásicos/química , Doxorrubicina/química , Nanocápsulas/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Composição de Medicamentos/métodos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Vitamina E/química , Vitamina E/metabolismo
4.
Biomacromolecules ; 19(6): 2034-2042, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29601720

RESUMO

Development of versatile nanoscale platforms for cancer diagnosis and therapy is of great importance for applications in translational medicine. In this work, we present the use of γ-polyglutamic acid (γ-PGA) nanogels (NGs) to load polypyrrole (PPy) for thermal/photoacoustic (PA) imaging and radiotherapy (RT)-sensitized tumor photothermal therapy (PTT). First, a double emulsion approach was used to prepare the cystamine dihydrochloride (Cys)-cross-linked γ-PGA NGs. Next, the cross-linked NGs served as a reactor to be filled with pyrrole monomers that were subjected to in situ oxidation polymerization in the existence of Fe(III) ions. The formed uniform PPy-loaded NGs having an average diameter of 38.9 ± 8.6 nm exhibited good water-dispersibility and colloid stability. The prominent near-infrared (NIR) absorbance feature due to the loaded PPy endowed the NGs with contrast enhancement in PA imaging. The hybrid NGs possessed excellent photothermal conversion efficiency (64.7%) and stability against laser irradiation, and could be adopted for PA imaging and PTT of cancerous cells and tumor xenografts. Importantly, we also explored the cooperative PTT and X-ray radiation-mediated RT for enhanced tumor therapy. We show that PTT of tumors can be more significantly sensitized by RT using the sequence of laser irradiation followed by X-ray radiation as compared to using the reverse sequence. Our study suggests a promising theranostic platform of hybrid NGs that may be potentially utilized for PA imaging and combination therapy of different types of tumors.


Assuntos
Nanoestruturas/química , Técnicas Fotoacústicas/métodos , Fotoquimioterapia/métodos , Polímeros/química , Pirróis/química , Radioterapia/métodos , Animais , Feminino , Géis/administração & dosagem , Géis/química , Camundongos , Camundongos Endogâmicos BALB C , Nanoestruturas/administração & dosagem , Neoplasias Experimentais/diagnóstico por imagem , Fotoquimioterapia/instrumentação , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/química , Polimerização , Raios X , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Neurodegener Dis ; 18(2-3): 74-83, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29587262

RESUMO

BACKGROUND: Charcot-Marie-Tooth disease (CMT) is the most common neurodegenerative disorder of the peripheral nervous system. More than 50 genes/loci were found associated with the disease. We found a family with autosomal-dominant CMT2. OBJECTIVE: To reveal the pathogenic gene of the family and further investigate the function of the variant. METHODS: DNA underwent whole-genome linkage analysis for all family members and whole-exome sequencing for 2 affected members. Neurofilament light polypeptide and wild-type or mutant neurofilament heavy polypeptide (NEFH) were co-transfected into SW13 (vim-) cells. The nefh-knockdown zebrafish model was produced by using morpholino antisense oligonucleotides. RESULTS: We identified a novel insertion variant (c.3057insG) in NEFH in the family. The variant led to the loss of a stop codon and an extended 41 amino acids in the protein. Immunofluorescence results revealed that mutant NEFH disrupted the neurofilament network and induced aggregation of NEFH protein. Knockdown of nefh in zebrafish caused a slightly or severely curled tail. The motor ability of nefh-knockdown embryos was impaired or even absent, and the embryos showed developmental defects of axons in motor neurons. The abnormal phenotype and axonal developmental defects could be rescued by injection of human wild-type but not human mutant NEFH mRNA. CONCLUSIONS: We identified a novel stop loss variant in NEFH that is likely pathogenic for CMT2, and the results provide further evidence for the role of an aberrant assembly of neurofilament in CMT.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Exoma/genética , Estudo de Associação Genômica Ampla , Filamentos Intermediários/genética , Mutação/genética , Animais , Axônios/metabolismo , Feminino , Humanos , Filamentos Intermediários/metabolismo , Masculino , Neurônios Motores/metabolismo , Proteínas de Neurofilamentos/genética , Linhagem , Fenótipo , Peixe-Zebra
6.
Bioconjug Chem ; 28(11): 2692-2697, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29083866

RESUMO

The formation of gold nanoparticle (Au NP)-loaded γ-polyglutamic acid (γ-PGA) nanogels (NGs) for computed tomography (CT) imaging of tumors is reported. γ-PGA with carboxyl groups activated by 1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide hydrochloride is first emulsified to form NGs and then in situ chemically cross-linked with polyethylenimine (PEI)-entrapped Au NPs with partial polyethylene glycol (PEG) modification ([(Au0)200-PEI·NH2-mPEG]). The formed γ-PGA-[(Au0)200-PEI·NH2-mPEG] NGs with a size of 108.6 ± 19.1 nm display an X-ray attenuation property better than commercial iodinated small-molecular-contrast agents and can be uptaken by cancer cells more significantly than γ-PGA-stabilized single Au NPs at the same Au concentrations. These properties render the formed NGs with an ability to be used as an effective contrast agent for the CT imaging of cancer cells in vitro and a tumor model in vivo. The developed hybrid NGs may be promising for the CT imaging or theranostics of different biosystems.


Assuntos
Ouro/química , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Ácido Poliglutâmico/análogos & derivados , Tomografia Computadorizada por Raios X/métodos , Animais , Ouro/farmacocinética , Células HeLa , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanogéis , Nanopartículas/análise , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoimina/química , Polietilenoimina/farmacocinética , Ácido Poliglutâmico/química , Ácido Poliglutâmico/farmacocinética
7.
Tumour Biol ; 37(6): 7809-21, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26695149

RESUMO

In this study, we used folic-acid-modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) to encapsulate cisplatin and paclitaxel (separately or together), and evaluated their antitumor effects against lung cancer; this study was conducted in order to investigate the antitumor effects of the co-delivery of cisplatin and paclitaxel by a targeted drug delivery system. Blood compatibility assays and complement activation tests revealed that FA-PEG-PLGA nanoparticles did not induce blood hemolysis, blood clotting, or complement activation. The results also indicated that FA-PEG-PLGA nanoparticles had no biotoxic effects, the drug delivery system allowed controlled release of the cargo molecules, and the co-delivery of cisplatin and paclitaxel efficiently induces cancer cell apoptosis and cell cycle retardation. In addition, co-delivery of cisplatin and paclitaxel showed the ability to suppress xenograft lung cancer growth and prolong the survival time of xenografted mice. These results implied that FA-PEG-PLGA nanoparticles can function as effective carriers of cisplatin and paclitaxel, and that co-delivery of cisplatin and paclitaxel by FA-PEG-PLGA nanoparticles results in more effective antitumor effects than the combination of free-drugs or single-drug-loaded nanoparticles.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sangue/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , Ácido Fólico/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas , Paclitaxel/farmacologia , Poliésteres/farmacologia , Polietilenoglicóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Coagulação Sanguínea/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Cisplatino/administração & dosagem , Ativação do Complemento/efeitos dos fármacos , Portadores de Fármacos , Composição de Medicamentos , Ácido Fólico/administração & dosagem , Hemólise/efeitos dos fármacos , Humanos , Contagem de Leucócitos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/administração & dosagem , Paclitaxel/administração & dosagem , Poliésteres/administração & dosagem , Poliésteres/química , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Coelhos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Biomacromolecules ; 15(2): 492-9, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24432789

RESUMO

Although, in general, nanogels present a good biocompatibility and are able to mimic biological tissues, their unstability and uncontrollable release properties still limit their biomedical applications. In this study, a simple approach was used to develop dual-cross-linked dendrimer/alginate nanogels (AG/G5), using CaCl2 as cross-linker and amine-terminated generation 5 dendrimer (G5) as a cocrosslinker, through an emulsion method. Via their strong electrostatic interactions with anionic AG, together with cross-linker Ca(2+), G5 dendrimers can be used to mediate the formation of more compact structural nanogels with smaller size (433 ± 17 nm) than that (873 ± 116 nm) of the Ca(2+)-cross-linked AG nanogels in the absence of G5. Under physiological (pH 7.4) and acidic (pH 5.5) conditions, the sizes of Ca(2+)-cross-linked AG nanogels gradually decrease probably because of their degradation, while dual-cross-linked AG/G5 nanogels maintain a relatively more stable structure. Furthermore, the AG/G5 nanogels effectively encapsulate the anticancer drug doxorubicin (Dox) with a loading capacity 3 times higher than that of AG nanogels. The AG/G5 nanogels were able to release Dox in a sustained way, avoiding the burst release observed for AG nanogels. In vitro studies show that the AG/G5-Dox NGs were effectively taken up by CAL-72 cells (a human osteosarcoma cell line) and maintain the anticancer cytotoxicity levels of free Dox. Interestingly, G5 labeled with a fluorescent marker can be integrated into the nanogels and be used to track the nanogels inside cells by fluorescence microscopy. These findings demonstrate that AG/G5 nanogels may serve as a general platform for therapeutic delivery and/or cell imaging.


Assuntos
Antineoplásicos/farmacologia , Dendrímeros/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Fluorescência , Polietilenoglicóis/química , Polietilenoimina/química , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Células NIH 3T3 , Nanogéis , Relação Estrutura-Atividade
9.
Sci Total Environ ; 913: 169759, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38171462

RESUMO

Microplastics have emerged as a concerning contaminant in drinking water sources, potentially interacting with pathogenic microorganisms and affecting the disinfection processes. In this study, MS2 was selected as an alternative for the human enteric virus. The influence of microplastics polyvinylchloride (MPs-PVC) on ultraviolet light emitting diode (UV-LED) inactivation of MS2 was investigated under various water chemistry conditions, such as MPs-PVC concentration, pH, salinity, and humic acid concentration. The results revealed that higher concentrations of MPs-PVC led to the reduced inactivation of MS2 by decreased UV transmittance, hindering the disinfection process. Additionally, the inactivation efficiency of MS2 in the presence of MPs-PVC was influenced by pH, and acidic solution (pH at 4, 5, and 6) exhibited higher efficiency compared to alkaline solution (pH at 8 and 9) and neutral solution (pH at 7). The low Na+ concentrations (0-50 mM) had a noticeable effect on MS2 inaction efficiency in the presence of MPs-PVC, while the addition of Ca2+ posed an insignificant effect due to the preferential interaction with MPs-PVC. Furthermore, the inactivation rate of MS2 initially increased and then decreased with increasing the concentration of humic acid, which was significantly different without MPs-PVC. These findings shed light on the complex interactions between MPs-PVC and MS2 in the UV-LED disinfection process under various water-quality parameters, contributing to drinking water safety and treatment.


Assuntos
Água Potável , Microplásticos , Humanos , Plásticos , Levivirus , Raios Ultravioleta , Substâncias Húmicas , Cloreto de Polivinila
10.
Int J Nanomedicine ; 19: 2691-2708, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510793

RESUMO

Purpose: Patients afflicted with dry eye disease (DED) experience significant discomfort. The underlying cause of DED is the excessive accumulation of ROS on the ocular surface. Here, we investigated the nitrogen doped-graphene quantum dots (NGQDs), known for their ROS-scavenging capabilities, as a treatment for DED. Methods: NGQDs were prepared by using citric acid and urea as precursors through hydrothermal method. The antioxidant abilities of NGQDs were evaluated through: scavenging the ROS both extracellular and intracellular, regulating the nuclear factor-erythroid 2-related factor (Nrf2) antioxidant pathway of human corneal epithelial cells (HCECs) and their transcription of inflammation related genes. Furthermore, NGQDs were modified by Arg-Gly-Asp-Ser (RGDS) peptides to obtain RGDS@NGQDs. In vivo, both the NGQDs and RGDS@NGQDs were suspended in 0.1% Pluronic F127 (w/v) and delivered as eye drops in the scopolamine hydrobromide-induced DED mouse model. Preclinical efficacy was compared to the healthy and DPBS treated DED mice. Results: These NGQDs demonstrated pronounced antioxidant properties, efficiently neutralizing free radicals and activating the intracellular Nrf2 pathway. In vitro studies revealed that treatment of H2O2-exposed HCECs with NGQDs induced a preservation in cell viability. Additionally, there was a reduction in the transcription of inflammation-associated genes. To prolong the corneal residence time of NGQDs, they were further modified with RGDS peptides and suspended in 0.1% Pluronic F127 (w/v) to create RGDS@NGQDs F127 eye drops. RGDS@NGQDs exhibited superior intracellular antioxidant activity even at low concentrations (10 µg/mL). Subsequent in vivo studies revealed that RGDS@NGQDs F127 eye drops notably mitigated the symptoms of DED mouse model, primarily by reducing ocular ROS levels. Conclusion: Our findings underscore the enhanced antioxidant benefits achieved by modifying GQDs through nitrogen doping and RGDS peptide tethering. Importantly, in a mouse model, our novel eye drops formulation effectively ameliorated DED symptoms, thereby representing a novel therapeutic pathway for DED management.


Assuntos
Síndromes do Olho Seco , Grafite , Polietilenos , Polipropilenos , Pontos Quânticos , Camundongos , Humanos , Animais , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Grafite/química , Pontos Quânticos/química , Nitrogênio/química , Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Poloxâmero , Síndromes do Olho Seco/tratamento farmacológico , Inflamação , Soluções Oftálmicas , Peptídeos
11.
Sci Total Environ ; 834: 155322, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35447168

RESUMO

The effect of polyethylene microplastics (PE-MPs) on the disinfection of Escherichia coli (E. coli) by sodium hypochlorite was investigated in different pH value, ionic strength, and NOM concentration to illustrate the impact of MPs on the pathogenic bacteria disinfection efficiency in nature water environment. The results showed that PE-MPs tended to agglomerate rather than disperse due to their strong hydrophobicity in water. Within 30 s, about 1.5 log10 of E. coli was adsorbed on the surface of PE-MPs, forming subsequent protection for E. coli. Thus, the presence of PE-MPs reduced the inactivation rate of E. coli. As for the particle-free solutions, the higher solution pH, the presence of natural organic matter (NOM), and the higher concentrations of cations (monovalent Na+ and divalent Ca2+) were confirmed as the major influencing factors decreasing the E. coli disinfection efficiency. However, due to the adsorption and protection of PE-MPs on E. coli, the influences of complex chemistry factors on the inactivation of E. coli were reduced. The inactivation of E. coli in PE-MPs (20 NTU) solution was 1 log10 lower than that in particle-free solution under the same water quality conditions. Therefore, considering the complex water chemistry, the existence of MPs could be a potential challenge for disinfection efficiency in the water treatment plants.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Desinfecção , Escherichia coli , Plásticos , Polietileno , Hipoclorito de Sódio , Poluentes Químicos da Água/análise
12.
J Mater Sci Mater Med ; 21(1): 309-17, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19634004

RESUMO

Deficient vascularization is one of the prominent shortcomings of porous tissue-engineering scaffolds, which results in insufficient oxygen and nutrients transportation. Here, heparin cross-linked demineralized bone matrices (HC-DBM) pre-loaded with vascular endothelial growth factor (VEGF) were designed to promote cells and new microvessels invasion into the matrices. After being chemical crosslinked with heparin by N-hydroxysuccinimide and N-(3-di-methylaminopropyl)-N'-ethylcarbodiimide, the scaffold could bind more VEGF than the non-crosslinked one and achieve localized and sustained delivery. The biological activity of VEGF binding on heparinized collagen was demonstrated by promoting endothelial cells proliferation. Evaluation of the angiogenic potential of heparinized DBM loaded with VEGF was further investigated by subcutaneous implantation. Improved angiogenesis of heparinized DBM loaded with VEGF was observed from haematoxylin-eosin staining and immunohistochemistry examination. The results demonstrated that heparin cross-linked DBM binding VEGF could be a useful strategy to stimulate cells and blood vessels invasion into the scaffolds.


Assuntos
Matriz Óssea/química , Matriz Óssea/metabolismo , Heparina/química , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacocinética , Animais , Técnica de Desmineralização Óssea , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/fisiologia , Substitutos Ósseos/química , Substitutos Ósseos/metabolismo , Substitutos Ósseos/farmacologia , Bovinos , Células Cultivadas , Reagentes de Ligações Cruzadas/farmacologia , Eficiência , Regeneração Tecidual Guiada/instrumentação , Humanos , Porosidade , Ratos , Ratos Sprague-Dawley , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/farmacologia
13.
ACS Appl Mater Interfaces ; 12(8): 9107-9117, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32003962

RESUMO

The second near-infrared (NIR-II, 1000-1700 nm) light-based diagnosis and therapy have received extensive attention for neoplastic disease treatments because of the fact that light in the NIR-II window possesses less photon scattering along with deeper tissue penetration than that in the NIR-I (700-950 nm) window. Herein, we present a Gd- and copper sulfide (CuS)-integrated nanogel (NG) platform for magnetic resonance (MR)/photoacoustic (PA) imaging-guided tumor-targeted photothermal therapy (PTT). In our approach, we prepared cross-linked polyethylenimine (PEI) NGs via an inverse emulsion method, modified the PEI NGs with Gd chelates, targeting ligand folic acid (FA) through a polyethylene glycol (PEG) spacer and 1,3-propanesultone, and finally loaded CuS nanoparticles (NPs) within the functional NGs. The as-synthesized Gd/CuS@PEI-FA-PS NGs with a mean size of 85 nm exhibit a good water dispersibility and protein resistance property, admirable r1 relaxivity (11.66 mM-1 s-1), excellent NIR-II absorption feature, high photothermal conversion efficiency (26.7%), and FA-mediated targeting specificity to cancer cells overexpressing FA receptor (FAR). With these properties along with the good cytocompatibility, the developed Gd/CuS@PEI-FA-PS NGs enable MR/PA dual-mode imaging-guided targeted PTT of FAR-overexpressing tumors under the irradiation of an NIR-II (1064 nm) laser. The designed Gd/CuS@PEI-FA-PS NGs may be used as a promising theranostic agent for MR/PA dual-mode imaging-guided PTT of other FAR-expressing tumors.


Assuntos
Cobre , Sistemas de Liberação de Medicamentos , Gadolínio , Hipertermia Induzida , Imageamento por Ressonância Magnética , Nanogéis/química , Neoplasias Experimentais , Fototerapia , Animais , Cobre/química , Cobre/farmacologia , Gadolínio/química , Gadolínio/farmacologia , Humanos , Camundongos , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/terapia
14.
Theranostics ; 10(10): 4349-4358, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292499

RESUMO

Development of versatile nanoplatforms that simultaneously integrate therapeutic and diagnostic features for stimuli-responsive delivery to tumors remains a great challenge. In this work, we report a novel intelligent redox-responsive hybrid nanosystem composed of MnO2 nanoparticles (NPs) and doxorubicin (DOX) co-loaded within poly(N-vinylcaprolactam) nanogels (PVCL NGs) for magnetic resonance (MR) imaging-guided and ultrasound-targeted microbubble destruction (UTMD)-promoted tumor chemotherapy. Methods: PVCL NGs were first synthesized via a precipitation polymerization method, decorated with amines using ethylenediamine, and loaded with MnO2 NPs through oxidation with permanganate and DOX via physical encapsulation and Mn-N coordination bonding. The as-prepared DOX/MnO2@PVCL NGs were well characterized. UTMD-promoted cellular uptake and therapeutic efficacy of the hybrid NGs were assessed in vitro, and a xenografted tumor model was used to test the NGs for MR imaging and UTMD-promoted tumor therapy in vivo.Results: The as-prepared DOX/MnO2@PVCL NGs with a size of 106.8 nm display excellent colloidal stability, favorable biocompatibility, and redox-responsiveness to the reductive intracellular environment and tumor tissues having a relatively high glutathione (GSH) concentration that can trigger the synchronous release of Mn2+ for enhanced T1-weighted MR imaging and DOX for enhanced cancer chemotherapy. Moreover, the DOX/MnO2@PVCL NGs upon the UTMD-promotion exhibit a significantly enhanced tumor growth inhibition effect toward subcutaneous B16 melanoma owing to the UTMD-improved cellular internalization and tumor penetration. Conclusion: Our work thereby proposes a promising theranostic nanoplatform for stimuli-responsive T1-weighted MR imaging-guided tumor chemotherapy.


Assuntos
Caprolactama/análogos & derivados , Doxorrubicina , Compostos de Manganês , Melanoma Experimental , Nanogéis/uso terapêutico , Óxidos , Polímeros , Neoplasias Cutâneas , Animais , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Caprolactama/farmacologia , Caprolactama/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Compostos de Manganês/farmacologia , Compostos de Manganês/uso terapêutico , Melanoma Experimental/diagnóstico por imagem , Melanoma Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos ICR , Nanopartículas/uso terapêutico , Oxirredução , Óxidos/farmacologia , Óxidos/uso terapêutico , Polímeros/farmacologia , Polímeros/uso terapêutico , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/tratamento farmacológico , Terapia por Ultrassom
15.
Plant Sci ; 286: 7-16, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31300144

RESUMO

Cotton fibers are developed epidermal cells of the seed coat and contain large amounts of cellulose and minor lignin-like components. Lignin in the cell walls of cotton fibers effectively provides mechanical strength and is also presumed to restrict fiber elongation and secondary cell wall synthesis. To analyze the effect of lignin and lignin-like phenolics on fiber quality and the transcriptional regulation of lignin synthesis in cotton fibers, we characterized the function of a bHLH transcription factor, GhbHLH18, during fiber elongation stage. GhbHLH18 knock-down plants have longer and stronger fibers, and accumulate less lignin-like phenolics in mature cotton fibers than control plants. By mining public transcriptomic data for developing fibers, we discovered that GhbHLH18 is coexpressed with most lignin synthesis pathway genes. Furthermore, we showed that GhbHLH18 strongly binds to the E-box in the promoter region of GhPER8 and activates its expression. Transient over expression of GhPER8 protein in tobacco leaves significantly decreased the content of coniferyl alcohol and sinapic alcohol-the substrate respectively for G-lignin and S-lignin biosynthesis. These results suggest that GhbHLH18 is negatively associated with fiber quality by activating peroxidase-mediated lignin metabolism, thus the paper represents an alternative strategy to improve fiber quality.


Assuntos
Fibra de Algodão/análise , Gossypium/genética , Lignina/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
16.
Biomater Sci ; 7(11): 4738-4747, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31502601

RESUMO

Current nanomedicine suffers from a big challenge due to the fact that most of the nanocarrier systems lack the desired tumor penetration depth, thereby limiting their clinical translation. Unlike the nanomaterials with a similar size or shape, microgels display excellent softness, fluidity and deformability, as well as stimuli-responsiveness in the tumor microenvironment. Herein, we report the synthesis of temperature-responsive poly(N-vinylcaprolactam)/oligo (ethylene glycol) acrylate/glycidyl methacrylate (PVCL/OEGA/GMA) microgels with different hydrodynamic radii (100-500 nm), crosslinking densities, 2-methoxyethyl acrylate (MEA) contents and OEGA chain lengths using a precipitation polymerization method and the investigation of the microgels in terms of their tumor penetration capability using a multicellular tumor spheroid (MCTS) model. The prepared microgels were well characterized with different techniques. We show that regardless of the size, crosslinking density, MEA content and OEGA chain length, all microgels display the desired cytocompatibility in the given concentration range. In vitro cellular uptake data reveal that similar to 2-dimensional (2-D) adherent cells, microgels with a smaller size display more enhanced cellular uptake than those having a larger size in the 3-D MCTS model. Likewise, 3-D MCTS penetration results indicate that the PVCL/OEGA/GMA microgels with the smallest radius of 100 nm exhibit the deepest penetration length. We then selected the microgels with a radius of 200 nm but with different physicochemical parameters to investigate their cellular uptake and tumor penetration behavior. Our data show that microgels with varying crosslinking densities, MEA contents and OEGA chain lengths do not have any appreciable changes in terms of their cellular uptake and penetration in the 3-D MCTS model. Our study provides new insights for the design of different microgel-based systems for further cancer theranostic applications.


Assuntos
Antineoplásicos/farmacologia , Caprolactama/análogos & derivados , Reagentes de Ligações Cruzadas/farmacologia , Microgéis/química , Polímeros/farmacologia , Esferoides Celulares/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Caprolactama/química , Caprolactama/farmacologia , Carbocianinas/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/síntese química , Reagentes de Ligações Cruzadas/química , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Microscopia de Fluorescência , Estrutura Molecular , Nanomedicina , Imagem Óptica , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície , Temperatura
17.
J Mater Chem B ; 7(3): 368-372, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-32254723

RESUMO

Polydopamine-coated magnetic mesoporous silica nanoparticles have been designed by loading ultrasmall iron oxide nanoparticles within hollow mesoporous silica nanopartricles and then coating polydopamine onto the particle surface. The developed nanoplatform displayed improved colloidal stability, enhanced r1 relaxivity and near infrared absorption feature, affording their use for multimodal cancer theranostics.


Assuntos
Antineoplásicos/farmacologia , Indóis/química , Nanopartículas de Magnetita/química , Neoplasias Mamárias Animais/tratamento farmacológico , Polímeros/química , Dióxido de Silício/química , Nanomedicina Teranóstica , Animais , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Neoplasias Mamárias Animais/patologia , Camundongos , Tamanho da Partícula , Porosidade , Propriedades de Superfície
18.
Biomaterials ; 29(9): 1189-97, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18083224

RESUMO

Demineralized bone matrix (DBM) is a collagen-based scaffold, but its low mechanical strength and limited BMP-2 binding ability restrict its application in bone repair. It is known that heparin could be immobilized onto scaffolds to enhance their binding of growth factors with the heparin-binding domain. Here, we crosslinked heparin to DBM to increase its BMP-2 binding ability. To our surprise, the mechanical strength of DBM was also dramatically increased. The compression modulus of heparin crosslinked DBM (HC-DBM) have improved (seven-fold increased) under wet condition, which would allow the scaffolds to keep specific shapes in vivo. As expected, HC-DBM showed specific binding ability to BMP-2. Additional studies showed the bound BMP-2 exerted its function to induce cell differentiation on the scaffold. Subcutaneous implantation of HC-DBM carrying BMP-2 showed higher alkaline phosphatase (ALP) activity (2 weeks), more calcium deposition (4 and 8 weeks) and more bone formation than that of control groups. It is concluded that HC-DBM has increased mechanical intensity as well as specific BMP-2 binding ability; HC-DBM/BMP-2 enhances the osteogenesis and therefore could be an effective medical device for bone repair.


Assuntos
Matriz Óssea/química , Matriz Óssea/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Substitutos Ósseos/química , Heparina/química , Fator de Crescimento Transformador beta/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Matriz Óssea/efeitos dos fármacos , Matriz Óssea/ultraestrutura , Proteína Morfogenética Óssea 2 , Cálcio/metabolismo , Bovinos , Reagentes de Ligações Cruzadas , Heparina/farmacologia , Humanos , Masculino , Teste de Materiais , Microscopia Eletrônica de Varredura , Osteogênese , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual
19.
Biomaterials ; 28(6): 1027-35, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17095085

RESUMO

Considerable research has been focused on the development of bone morphogenetic protein-2 (BMP-2) delivery system for homologous and efficient bone regeneration. The aim of the present study was to develop a collagen-based targeting bone repair system. A collagen-binding domain (CBD) was added to the N-terminal of native BMP-2 to allow it bind to collagen specifically. We showed that the collagen-binding bone morphogenetic protein-2 (named bone morphogenetic protein2-h, BMP2-h) had maintained the full biological activity as compared to rhBMP2 lacking the CBD. In vitro functional study also demonstrated that collagen matrix could maintain higher bioactivity of BMP2-h than native BMP-2. When demineralized bone matrix (DBM) impregnated with BMP2-h was implanted subcutaneously in rats, homogeneous bone formation was observed. Moreover, in a rabbit mandible defect model, surgical implantation of collagen matrix loaded with BMP2-h exhibited remarkable osteoinductive properties and excellent homogeneous bone formation. Our studies suggested that this novel collagen-based BMP-2 targeting bone repair system induced better bone formation not only in quantity but also in quality. Similar approaches may also be used for the repair of other tissue injuries.


Assuntos
Matriz Óssea/química , Proteínas Morfogenéticas Ósseas/administração & dosagem , Proteínas Morfogenéticas Ósseas/química , Regeneração Óssea/efeitos dos fármacos , Colágeno/metabolismo , Fraturas Mandibulares/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Fator de Crescimento Transformador beta/administração & dosagem , Fator de Crescimento Transformador beta/química , Animais , Técnica de Desmineralização Óssea , Proteína Morfogenética Óssea 7 , Proteínas Morfogenéticas Ósseas/farmacocinética , Portadores de Fármacos/química , Consolidação da Fratura/efeitos dos fármacos , Masculino , Fraturas Mandibulares/patologia , Coelhos , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta/farmacocinética , Resultado do Tratamento
20.
ACS Appl Mater Interfaces ; 9(4): 3411-3418, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28067034

RESUMO

We report the synthesis of poly(N-vinylcaprolactam) nanogels (PVCL NGs) loaded with gadolinium (Gd) for tumor MR imaging applications. The PVCL NGs were synthesized via precipitation polymerization using the monomer N-vinylcaprolactam (VCL), the comonomer acrylic acid (AAc), and the degradable cross-linker 3,9-divinyl-2,4,8,10-tetraoxaspiro-[5,5]-undecane (VOU) in aqueous solution, followed by covalently binding with 2,2',2″-(10-(4-((2-aminoethyl)amino)-1-carboxy-4-oxobutyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetic acid (NH2-DOTA-GA)/Gd complexes. We show that the formed Gd-loaded PVCL NGs (PVCL-Gd NGs) having a size of 180.67 ± 11.04 nm are water dispersible, colloidally stable, uniform in size distribution, and noncytotoxic in a range of the studied concentrations. The PVCL-Gd NGs also display a r1 relaxivity (6.38-7.10 mM-1 s-1), which is much higher than the clinically used Gd chelates. These properties afforded the use of the PVCL-Gd NGs as an effective positive contrast agent for enhanced MR imaging of cancer cells in vitro as well as a subcutaneous tumor model in vivo. Our study suggests that the developed PVCL-Gd NGs could be applied as a promising contrast agent for T1-weighted MR imaging of diverse biosystems.


Assuntos
Nanopartículas/química , Caprolactama/análogos & derivados , Meios de Contraste , Gadolínio , Humanos , Imageamento por Ressonância Magnética , Neoplasias , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA