Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Macromol Rapid Commun ; 45(14): e2400102, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38648071

RESUMO

The II-I phase transition of isotactic poly(1-butene) (iPBu) leads to improved mechanical performance. However, this will take several weeks and increase storage and processing costs. In this work, shear forces are introduced into the supercooled iPBu melt, and the effects of isothermal crystallization temperature (Tc) and shear temperature (Tshear) on crystallization and phase transition are explored. Shear-induced transcrystalline morphology of Form II with a significantly shortened crystallization induction period can be observed at relatively high Tc (105 °C). Besides, the shear-induced Form II can transit to Form I faster than the unsheared one. In addition, the phase transition rate increases as the Tshear decreases, with the fastest rate occurring at Tshear of 120 °C. The half transition time (t1/2) is measured as 6.3 h when Tc = 105 °C, Tshear = 120 °C, which is much shorter than the 20.7 h required for unsheared samples. The accelerated phase transition of iPBu can be attributed to the stretching of molecular chains, resulting from shear treatment. This study provides a quantitative analysis of the influence of the shear treatment and the Tshear on the II-I phase transition rate. It also presents a cost-effective and straightforward approach for expediting the phase transition process.


Assuntos
Transição de Fase , Polienos/química , Cristalização , Temperatura , Polímeros/química , Resistência ao Cisalhamento
2.
Macromol Rapid Commun ; 45(11): e2400045, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38365211

RESUMO

Non-traditional intrinsic luminescent (NTIL) polymer is an emerging field, and its color-tunable modification is highly desirable but still rarely investigated. Here, a click chemistry approach for the color-tunable modifications of NTIL polymers by introducing clickable polymerization-induced emission luminogen (PIEgen), is demonstrated. Through Cu-catalyzed azide-alkyne cycloaddition click chemistry, a series of PIEgens is successful prepared, which is further polymerized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Interestingly, after clickable modification, these monomers are nonemissive in both solution and aggregation states; while, the corresponding polymers exhibit intriguing aggregation-induced emission (AIE) characteristics, confirming their PIEgen characteristics. By varying alkynyl substitutions, color-tunable NTIL polymers are achieved with emission wavelength varying from 448 to 498 nm, revealing a series of PIEgens and verifying the importance of modification of NTIL polymers. Further luminescence energy transfer application is carried out as well. This work therefore designs a series of clickable PIEgens and opens a new avenue for the modification of NTIL polymers via click chemistry, which may cause inspirations to the research fields including luminescent polymer, NTIL, click chemistry, AIE and modification.


Assuntos
Química Click , Cor , Luminescência , Polimerização , Polímeros , Polímeros/química , Polímeros/síntese química , Estrutura Molecular , Catálise , Substâncias Luminescentes/química , Substâncias Luminescentes/síntese química , Azidas/química , Alcinos/química
3.
Macromol Rapid Commun ; 39(20): e1800353, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30027645

RESUMO

The crystallization behavior of an amorphous poly(l-lactide) (PLLA) layer deposited on uniaxially oriented isotactic polypropylene (iPP) substrate is been studied by atomic force microscopy (AFM) and electron microscopy combined with electron diffraction. A patterned PLLA structure with two fixed lamella and chain orientations is observed. Electron diffraction demonstrates that the major lamellar set is oriented with molecular chains perpendicular to the chain direction of the iPP. The minor lamellar set is inclined at ≈64° to both the iPP chain axis direction and the lamellae of the major set as judged from both the bright field electron micrograph and the AFM image. The orientation of the main set is explained in terms of "soft" epitaxy or graphoepitaxy, in which PLLA chains oriented parallel to the ditches of the iPP substrate caused by alternatively arranged crystalline and amorphous regions. The minor set is due to a homoepitaxy of PLLA with parallelism of the helical paths. The orientation of this minor set of lamellae therefore depends on and can help determine the chirality-l or d-of the PLA investigated.


Assuntos
Cristalização , Poliésteres/síntese química , Polímeros/síntese química , Polipropilenos/síntese química , Dioxanos , Microscopia de Força Atômica , Microscopia Eletrônica , Poliésteres/química , Polímeros/química , Polipropilenos/química
4.
Macromol Rapid Commun ; 38(22)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28980746

RESUMO

Block copolymer (BCP) self-assembly is a versatile technique in the preparation of polymeric aggregates with varieties of morphologies. However, its morphology library is limited. Here, the discovery of pincushion of tubules is reported for the first time, via BCP self-assembly of poly(4-vinylpyridine)-b-polystyrene (P4VP-b-PS) with very high molecular weight (500 kDa) and asymmetry (2 mol% P4VP). The investigation confirms the importance of core-forming block length on morphology control of BCP self-assemblies, especially with respect to tubular structures. The morphology landscape of tubular structures is successfully established, where dumbbell of tubule, tubule, loose clew of tubules, tight clew of tubules, and pincushion of tubules can be prepared by adjusting the core-forming block length. This work therefore expands the structure library of BCP self-assemblies and opens up a new avenue for the further applications of these tubular materials.


Assuntos
Poliestirenos/química , Polivinil/química , Microscopia Eletrônica de Transmissão , Peso Molecular , Nanoestruturas/química , Poliestirenos/síntese química , Polivinil/síntese química
5.
Macromol Rapid Commun ; 38(6)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28169485

RESUMO

A simplified one-pot and less harmful method has been introduced for the synthesis of borinic acid monomer. The corresponding borinic acid polymer (PBA) has been prepared by reversible addition-fragmentation chain transfer polymerization. Property investigations confirm the characteristics of PBA as a new type of "smart material" in the field of thermo-responsive polymer. The potential application of PBA in the field of enzymatic biofuel cell has been illustrated with a wide open circuit potential of 0.92 V.


Assuntos
Fontes de Energia Bioelétrica , Ácidos Borínicos/química , Oxirredutases/metabolismo , Polimerização , Polímeros/química , Polímeros/síntese química , Estrutura Molecular , Tamanho da Partícula , Polímeros/metabolismo , Porosidade , Propriedades de Superfície
6.
Macromol Rapid Commun ; 37(21): 1735-1741, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27647653

RESUMO

A one-pot method is introduced for the successful synthesis of narrow-distributed (D = 1.22) vinyl polymer with both ultrahigh molecular weight (UHMW) (M w = 1.31 × 106 g mol-1 ) and micro-/nanomorphology under mild conditions. The method involves the following four stages: homogeneous polymerization, polymerization-induced self-assembly (PISA), PISA and reorganization, and PISA and multiple reorganizations. The key points to the production of UHMW polystyrene are to minimize radical termination by segregating radicals in different nanoreactors and to ensure sufficient chain propagation by promoting further reorganizations of these reactors in situ. This method therefore endows polymeric materials with the outstanding properties of both UHMW and tunable micro-/nanoparticles under mild conditions in one pot.


Assuntos
Nanopartículas/química , Polimerização , Polímeros/química , Polímeros/síntese química , Radicais Livres/química , Peso Molecular , Tamanho da Partícula , Propriedades de Superfície
7.
Soft Matter ; 11(36): 7159-64, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26256052

RESUMO

The thermo-responsive properties of borinic acid polymers were investigated by experimental and molecular dynamics simulation studies. The homopolymer poly(styrylphenyl(tri-iso-propylphenyl)borinic acid) (PBA) exhibits an upper critical solution temperature (UCST) in polar organic solvents that is tunable over a wide temperature range by addition of small amounts of H2O. The UCST of a 1 mg mL(-1) PBA solution in DMSO can be adjusted from 20 to 100 °C by varying the H2O content from ∼0-2.5%, in DMF from 0 to 100 °C (∼3-17% H2O content), and in THF from 0 to 60 °C (∼4-19% H2O). The UCST increases almost linearly from the freezing point of the solvent with higher freezing point to the boiling point of the solvent with the lower boiling point. The mechanistic aspects of this process were investigated by molecular dynamics simulations. The latter indicate rapid and strong hydrogen-bond formation between BOH moieties and H2O molecules, which serve as crosslinkers to form an insoluble network. Our results suggest that borinic acid-containing polymers are promising as new "smart" materials, which display thermo-responsive properties that are tunable over a wide temperature range.


Assuntos
Ácidos Borínicos/química , Poliestirenos/química , Temperatura , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Solventes , Água/química
8.
Biol Cell ; 105(3): 118-28, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23289515

RESUMO

BACKGROUND INFORMATION: Cyanobacteria possess Aquaporin-Z (AqpZ) membrane channels which have been suggested to mediate the water efflux underlying osmostress-inducible gene expression and to be essential for glucose metabolism under photomixotrophic growth. However, preliminary observations suggest that the biophy-sical properties of transport and physiological meaning of AqpZ in such photosynthetic microorganisms are not yet completely assessed. RESULTS: In this study, we used Xenopus laevis oocyte and proteoliposome systems to directly demonstrate the water permeability of the cyanobacterium Synechococcus sp. PCC7942 aquaporin, SsAqpZ. By an in vitro assay of intracellular acidification in yeast cells, SsAqpZ was found to transport also CO2 . Consistent with this result, during the entire exponential phase of growth, Synechococcus SsAqpZ-null-mutant cells grew slower than the corresponding wild-type cells. This phenotype was stronger with higher levels of extracellular CO2 . In line with the conversion of CO2 gas into HCO3(-) ions under alkaline conditions, the impairment in growth of the SsAqpZ-null strain was weaker in more alkaline culture medium. CONCLUSIONS: Cyanobacterial SsAqpZ may exert a pleiotropic function in addition to the already reported roles in macronutrient homeostasis and osmotic-stress response as it appears to constitute an important pathway in CO2 uptake, a fundamental step in photosynthesis.


Assuntos
Aquaporinas/metabolismo , Dióxido de Carbono/metabolismo , Permeabilidade da Membrana Celular , Synechococcus/citologia , Synechococcus/metabolismo , Água/metabolismo , Animais , Bioensaio , Lipossomos/metabolismo , Mutação/genética , Oócitos/metabolismo , Osmose , Saccharomyces cerevisiae/metabolismo , Synechococcus/efeitos dos fármacos , Synechococcus/crescimento & desenvolvimento , Xenopus laevis
9.
ACS Macro Lett ; 12(1): 40-47, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36546477

RESUMO

Stimuli-responsive opposite emission (A)/absorption (B) polymer material (A∪B = Ω and A∩B = Ø) represents a novel polymer material that is difficult to prepare. Here, we demonstrate a one-pot strategy for the molecular design of stimuli-responsive opposite emission/absorption polymer material with intriguing properties of opposite emission/absorption and aggregation-induced emission (AIE) type nontraditional intrinsic luminescence (NTIL) in the visible region, through reversible addition-fragmentation chain transfer polymerization-induced emission (PIE) of the N,N-dimethyl-triphenylmethanol moiety. Investigations reveal that NTIL is due to the through-space conjugation effect caused by polymer chain entanglement, when increasing the repeating unit number. The corresponding stimuli-responsive opposite emission/absorption properties are derived from the carbocation-quinoid mechanism, which enables the fluorescence encryption capability. This work therefore demonstrates the proof of concept of a novel opposite emission/absorption polymer material that might cause inspiration in different fields.


Assuntos
Polímeros Responsivos a Estímulos , Polimerização , Polímeros , Corantes , Fluorescência
10.
J Chromatogr A ; 1708: 464368, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37708673

RESUMO

Dummy molecularly imprinted polymers (DMIPs) with high selectivity for amphetamine-type stimulants (ATSs) were synthesized using synephrine molecule as a dummy template. The polymers were irregularly massive with a specific surface area of 330 m2g-1. Adsorption experiments found that the imprinting factors for five ATSs (amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, and 3,4-methylenedioxy-N-ethylamphetamine) were 2.3∼3.7. The DMIPs-agarose gel mixed matrix membranes (MMMs) were further prepared by incorporating DMIPs in the agarose matrix. MMMs were used to extract five ATSs from wastewater and urine samples. Extraction conditions such as membrane matrix, sample pH, dissolved organic matter content, extraction time, and elution reagent were optimized. Under optimal conditions, the developed MMMs-HPLC-MS/MS method exhibited low limits of detection (0.1∼3.0ng L-1), satisfactory recoveries (91.7∼100%), and good repeatability (RSD<7%, n=3). It was then successfully applied to ATSs analysis in wastewater and urine samples. Recoveries of ATSs in spiked wastewater and urine were 82.0∼98.4% and 82.3∼95.7%, respectively. Moreover, compared with other methods, the present method possessed the advantages of high quantitative ability, suitable for typical environmental conditions, and low application cost. The above results suggested that the developed MMMs-HPLC-MS/MS method could be used as a feasible strategy to extract and determine trace ATSs in wastewater and urine samples.


Assuntos
Anfetamina , Estimulantes do Sistema Nervoso Central , Polímeros Molecularmente Impressos , Sefarose , Águas Residuárias , Espectrometria de Massas em Tandem
11.
Food Chem ; 391: 133239, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35609463

RESUMO

With the increasing demand for food quality and food safety, it is urgent to develop efficient packaging strategies for prolonging the shelf life of food. Functional polymeric nanofibers have emerged as promising packaging materials and made tremendous breakthrough in food packaging field. Electrospinning technique is recognized as a versatile and high-efficiency method to produce nanofibers with multifunctional properties and adjustable structures. This review focus on electrospinning types and structural construction of nanofibers (uniaxial, core-shell and porous structures) as well as highlighted the advanced functionality of polymeric nanofibers in active packaging. Moreover, the emerging stimuli-responsive nanofibers for controlled release of active compounds were introduced in this review. Ultimately, the existing challenges, future prospects and development directions of nanofiber-based packaging materials were also discussed, which will facilitate the utilization of electrospinning nanotechnology in food industry.


Assuntos
Nanofibras , Embalagem de Alimentos/métodos , Qualidade dos Alimentos , Nanofibras/química , Nanotecnologia , Polímeros/química
12.
J Pharm Biomed Anal ; 215: 114765, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35447493

RESUMO

Dummy molecularly imprinted polymers (DMIPs) for selective extraction of five common synthetic cathinones (SCs) were prepared by bulk polymerization. DMIPs materials possessed narrow diameter distribution (30-60 µm) and large specific surface area (329.6 m2 g-1). Imprinting factors for cathinone, methcathinone, mephedrone, methylone and ethylone were 1.11-1.82. DMIPs could also quickly adsorb SCs from aqueous solutions within 5 min. Therefore, the materials were used as solid-phase extraction (SPE) sorbents to selectively extract five SCs in complex samples. An accurate and sensitive analytical method based on DMIPs-SPE combined with HPLC-MS/MS was established. Under optimal conditions, the established method showed low limits of detection (0.002-0.1 ng mL-1), satisfactory recoveries (84.1-97.7%) and good repeatability (relative standard deviation (RSD) below 9%). The method was successfully verified using wastewater, urine and cocktail samples. Recoveries of SCs at three spiking levels were in the range of 75.1-98.6%, with RSD values below 7.0%. Compared with commercial sorbents, DMIPs showed better clean-up ability with matrix effect values of -24.1%-8.3% for all SCs in wastewater, urine and cocktail samples. Therefore, the developed DMIPs-SPE-HPLC-MS/MS strategy could be used as a specific and cost-effective method for sensitive determination of SCs in complex samples.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Adsorção , Alcaloides , Cromatografia Líquida de Alta Pressão/métodos , Impressão Molecular/métodos , Polímeros , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem , Águas Residuárias
13.
Food Res Int ; 157: 111256, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761568

RESUMO

Foodborne diseases caused by foodborne pathogens lead to serious harm to food safety and human health. This work fabricated an enzyme-responsive packaging film based on porous poly (lactic acid) (PLA) nanofibers modified by positively charged polyethyleneimine (PEI) and further to adsorb negatively charged pectin coating, which loaded with thymol (THY) for protecting fruits from microbial infection. The porous PLA nanofibers were fabricated by combining "Breath Figure" principle and electrospinning technique. The XPS and FTIR characterizations showed that PLA nanofiber membrane was successfully modified by PEI. The prepared nanofiber membrane significantly inhibited the growth of E. coli, S. aureus and Bacillus subtilis (>95%), especially showed excellent antifungal activity against Aspergillus niger. The release of THY from pectin-coated porous nanofiber membrane (THY@PLA-PEI-Pectin) was triggered by pectinase, which was secreted by microorganisms from food contamination. Besides, the biocompatible THY@PLA-PEI-Pectin nanofiber membrane prolonged the shelf life of citrus. Therefore, this pectinase-responsive nanofiber membrane has desirable application prospects in the development of active or smart packaging systems.


Assuntos
Nanofibras , Preparações de Ação Retardada , Escherichia coli , Embalagem de Alimentos/métodos , Ácido Láctico , Pectinas , Poliésteres , Poligalacturonase , Staphylococcus aureus , Timol/farmacologia
14.
J Chromatogr A ; 1663: 462759, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34986443

RESUMO

Molecularly imprinted polymer was constructed for the first time through dummy imprinting strategy with homopiperonylamine as dummy template. The prepared dummy molecularly imprinted polymer (DMIP) showed high class selectivity towards the most popular amphetamine-type stimulants (ATSs) such as methamphetamine, amphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxy-amphetamine, and 3,4-methylenedioxy-N-ethylamphetamine with the imprinting factors of 2.280∼3.698 and selectivity factors of 1.654∼3.698. Moreover, ATSs could be rapidly adsorbed from water with the equilibrium time within 5 min. Hydrogen-bonding interaction between the amino groups of ATSs and carboxy on DMIP could be dominated adsorption mechanism. DMIP was employed as solid phase extraction (SPE) sorbents. Under the optimum extraction conditions, the method using DMIP-based SPE and high performance liquid chromatography-tandem mass spectrometry showed good linearity in the range of 0.025∼1.00 µmol L-1, good repeatability (RSD 4.8∼8.6%, n = 5) and low limits of quantification (0.007∼0.200 ng mL-1, S/N = 10). Satisfactory recoveries (72.5∼120%) with low RSD values (<10%) were obtained for all targets viz. spiked coke carbonated drinks, beer and cocktail. Compared with other commercial SPE sorbents, DMIP exhibited lower matrix effect (ME) for coke, beer and cocktail with ME values of 101∼124%, 75.8∼80.2% and 103∼128%, respectively. The obtained results suggested that the developed DMIP materials could be a potential candidate for pretreatment of ATSs in alcoholic and nonalcoholic beverages.


Assuntos
Impressão Molecular , Adsorção , Anfetamina , Bebidas , Cromatografia Líquida de Alta Pressão , Polímeros Molecularmente Impressos , Polímeros , Extração em Fase Sólida
15.
Sci Total Environ ; 839: 156362, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35640747

RESUMO

Plastic wastes are ubiquitous in the offshore and oceans with an increasing quantity, and inevitably, microbial communities colonized the plastics to form biofilms, which have become dispersal vectors for antibiotic resistance genes (ARGs). This study focused on the impact of plastic properties including hardness, wettability, and zeta-potential on the biomass, prokaryotic and eukaryotic communities and ARGs in biofilms formed on specific plastics (polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET)) in an estuarine environment. The results showed that, in comparison to PP, more biomass characterized by more dry weight, chlorophyll a (Chl a) and total organic carbon (TOC) was found in biofilms formed on PE and PET, which may be related to their lower surface wettability. Proteobacteria were the dominant prokaryotic phyla, and they accounted for 53.06%, 81.90%, 37.06%, 76.25%, and 54.27% of the total sequences in biofilms on PE, PP, PET, water and sediment, respectively. Ascomycota were the predominant eukaryotic phyla in biofilms, water, and sediment, and their abundances were elevated in biofilms on PP, which accounted for 34.73%. The biofilms on PP had a higher relative abundance of ARGs (3.13) compared to those on PE (2.59) and PET (0.23). Furthermore, both the plastic-biofilm properties (e.g. dry weight, Chl a, and TOC) and microbial communities (e.g., Fungi and Proteobacteria) may be involved in regulating the abundance of ARGs. Moreover, mobile genetic elements (MGEs) were significantly correlated to both the absolute and relative abundance of ARGs, indicating that MGEs may regulate the migration of ARGs in biofilms. Taken together, this investigation provides the significance of the plastic type, surface properties, and surrounding environments in shaping microbial communities and ARGs in biofilms formed on plastics.


Assuntos
Antibacterianos , Eucariotos , Antibacterianos/análise , Biofilmes , Clorofila A , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Plásticos , Polietilenotereftalatos , Água
16.
Nanotechnology ; 22(24): 245104, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21543837

RESUMO

The clinical success of gene therapy for lung cancer is not only dependent on efficient gene carriers but also on a suitable delivery route. A pulmonary delivery route can directly deliver gene vectors to the lung which is more efficient than a systemic delivery route. For gene carriers, cationic liposomes have recently emerged as leading non-viral vectors in worldwide gene therapy clinical trials. However, cytotoxic effects or apoptosis are often observed which is mostly dependent on the cationic lipid used. Therefore, an efficient and safe cationic lipid, 6-lauroxyhexyl lysinate (LHLN), previously synthesized by our group was first used to prepare cationic liposomes. Physicochemical and biological properties of LHLN-liposomes were investigated. LHLN-liposome/DNA complexes showed positive surface charge, spherical morphology, a relatively narrow particle size distribution and strong DNA binding capability. Compared with Lipofectamine2000, the new cationic liposome formulation using LHLN exhibited not only lower cytotoxicity (P < 0.05) but also similar transfection efficiency in A549 and HepG2 lung cancer cells for in vitro tests. When administered by intratracheal instillation into rat lungs for in vivo evaluation, LHLN-liposome/DNA complexes exhibited higher pulmonary gene transfection efficiency than Lipofectamine2000/DNA complexes (P < 0.05). These results suggested that LHLN-liposomes may have great potential for efficient pulmonary gene delivery.


Assuntos
Cátions/química , Técnicas de Transferência de Genes , Lauratos/química , Lipossomos/química , Pulmão/metabolismo , Lisina/análogos & derivados , Animais , Líquido da Lavagem Broncoalveolar/citologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fenômenos Químicos/efeitos dos fármacos , DNA/sangue , Desoxirribonuclease I/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lauratos/toxicidade , Lipossomos/sangue , Lipossomos/ultraestrutura , Lisina/química , Lisina/toxicidade , Masculino , Microscopia de Fluorescência , Ratos , Ratos Wistar , Transfecção
17.
Int J Mol Sci ; 12(2): 1371-88, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21541064

RESUMO

Low cytotoxicity and high gene transfection efficiency are critical issues in designing current non-viral gene delivery vectors. The purpose of the present work was to synthesize the novel biodegradable poly (lactic acid)-poly(ethylene glycol)-poly(l-lysine) (PLA-PEG-PLL) copolymer, and explore its applicability and feasibility as a non-viral vector for gene transport. PLA-PEG-PLL was obtained by the ring-opening polymerization of Lys(Z)-NCA onto amine-terminated NH(2)-PEG-PLA, then acidolysis to remove benzyloxycarbonyl. The tri-block copolymer PLA-PEG-PLL combined the characters of cationic polymer PLL, PLA and PEG: the self-assembled nanoparticles (NPs) possessed a PEG loop structure to increase the stability, hydrophobic PLA segments as the core, and the primary ɛ-amine groups of lysine in PLL to electrostatically interact with negatively charged phosphate groups of DNA to deposit with the PLA core. The physicochemical properties (morphology, particle size and surface charge) and the biological properties (protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in HeLa and HepG2 cells) of the gene-loaded PLA-PEG-PLL nanoparticles (PLA-PEG-PLL NPs) were evaluated, respectively. Agarose gel electrophoresis assay confirmed that the PLA-PEG-PLL NPs could condense DNA thoroughly and protect DNA from nuclease degradation. Initial experiments showed that PLA-PEG-PLL NPs/DNA complexes exhibited almost no toxicity and higher gene expression (up to 21.64% in HepG2 cells and 31.63% in HeLa cells) than PEI/DNA complexes (14.01% and 24.22%). These results revealed that the biodegradable tri-block copolymer PLA-PEG-PLL might be a very attractive candidate as a non-viral vector and might alleviate the drawbacks of the conventional cationic vectors/DNA complexes for gene delivery in vivo.


Assuntos
Plásticos Biodegradáveis/síntese química , Poliésteres/química , Polietilenoglicóis/química , Polilisina/análogos & derivados , Polilisina/química , Transfecção/métodos , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/farmacologia , DNA/genética , DNA/metabolismo , Células HeLa , Células Hep G2 , Humanos , Nanopartículas/química , Poliésteres/farmacologia , Polietilenoglicóis/farmacologia , Polilisina/farmacologia
18.
Carbohydr Polym ; 270: 118391, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364632

RESUMO

Pathogenic microorganisms posed perniciousness for postharvest fruits and vegetables, as well as brought potential risks for human health. In this work, pullulan/polyvinyl alcohol (PUL/PVA) nanofibers incorporated with thymol-loaded porphyrin metal-organic framework nanoparticles (THY@PCN-224 NPs) were developed for antibacterial food packaging. PCN-224 MOFs not only act as thymol loading carriers but also highly produce singlet oxygen (1O2) with bactericidal activity. PUL/PVA nanofiber was a promising sustainable substrate because of its good flexibility, biocompatibility and biodegradability. The loading capacity of PCN-224 for thymol was about 20%. The THY@PCN/PUL/PVA nanofibers exhibited synergistic antibacterial activities against E. coli (~99%) and S. aureus (~98%) under light irradiation. The cell viability assays and fruit preservation study demonstrated good biosafety of the polymeric film. The results suggested that this novel nanofiber has potential application prospects for food packaging.


Assuntos
Antibacterianos/farmacologia , Embalagem de Alimentos/métodos , Glucanos/química , Nanofibras/química , Álcool de Polivinil/química , Timol/farmacologia , Antibacterianos/química , Botrytis/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Frutas , Humanos , Estruturas Metalorgânicas/química , Nanopartículas/química , Porfirinas/química , Staphylococcus aureus/efeitos dos fármacos , Timol/química
19.
Mar Pollut Bull ; 167: 112287, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33892435

RESUMO

In this study, polyethylene microplastics were artificially photoaged by xenon light. Experiments were then performed with methylene blue (MB) dye to compare the changes in the structure, properties, and adsorption-desorption behaviors of the aged and virgin polyethylene microplastics. The results showed that the aged polyethylene microplastics were hydrophilic with oxygen-containing functional groups, which enhanced the adsorption capacity of polyethylene for MB from 0.63 mg·g-1 to 8.12 mg·g-1. The adsorption isotherms changed from the Henry model (virgin polyethylene microplastics) to the Langmuir model (aged polyethylene microplastics), indicating that the partitioning function was gradually replaced by a single-layer covering during the adsorption process. In addition, 7% and 17.8% of the MB loaded onto the aged polyethylene microplastics was desorbed into water and a simulated intestinal fluid, respectively. These findings reveal that aged polyethylene microplastics can accumulate MB, thus posing potential risks to aqueous environments and biological tissues.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Cinética , Azul de Metileno , Plásticos , Polietileno , Água , Poluentes Químicos da Água/análise
20.
Biomacromolecules ; 11(7): 1882-90, 2010 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-20536122

RESUMO

Well-defined AB2 Y-shaped miktoarm star copolymers of PNIPAM-b-(PZLL)2 and PNIPAM-b-(PLL)2 were synthesized through the combination of atom transfer radical polymerization (ATRP), ring-opening polymerization (ROP), and click chemistry, where PNIPAM, PZLL, and PLL are poly(N-isopropylacrylamide), poly(epsilon-benzyloxy-carbonyl-L-lysine), and poly(L-lysine), respectively. Propargyl amine was employed as ROP initiator for the preparation of alkynyl-terminated PZLL. Diazide-terminated PNIPAM was obtained with an azide-containing ATRP initiator. The subsequent click reaction led to the formation of PNIPAM-b-(PZLL)2. After the removal of the benzyloxycarbonyl group, water-soluble PNIPAM-b-(PLL)2 was obtained. The core-shell micelles of PNIPAM-b-(PLL)2 were formed above lower critical solution temperature of PNIPAM block. At this temperature, the shell cross-linking was performed through the reaction between glutaraldehyde and the primary amine groups of the PLL shell, affording the micelles with the endurance to temperature and pH changes. These shell-cross-linked micelles were used as drug nanocarriers and the release profile was dually controlled by the solution temperature and the cross-linking degree.


Assuntos
Portadores de Fármacos/química , Micelas , Polímeros/síntese química , Resinas Acrílicas/química , Aminas , Reagentes de Ligações Cruzadas/química , Estabilidade de Medicamentos , Glutaral , Concentração de Íons de Hidrogênio , Polilisina/química , Polímeros/uso terapêutico , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA