Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Pharm Bull (Tokyo) ; 72(7): 681-688, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39019599

RESUMO

Clarithromycin (CLA) is the preferred drug for treating respiratory infections in pediatric patients, but it has the drawbacks of extreme bitterness and poor water solubility. The purpose of this study was to improve solubility and mask the extreme bitterness of CLA. We use Hot Melt Extrusion (HME) to convert CLA and Eudragit® E100 into Solid Dispersion (SD). Differential scanning calorimetry (DSC) and Powder X-ray diffraction (PXRD) were used to identify the crystalline form of the prepared SDs, which showed that the crystalline CLA was converted to an amorphous form. At the same time, an increase in dissolution rate was observed, which is one of the properties of SD. The results showed that the prepared SD significantly increased the dissolution rate of crystalline CLA. Subsequently, the SD of CLA was prepared into a dry suspension with excellent suspending properties and a taste-masking effect. The bitterness bubble chart and taste radar chart showed that the SD achieved the bitter taste masking of CLA. Principal components analysis (PCA) of the data generated by the electronic tongue showed that the bitter taste of CLA was significantly suppressed using the polymer Eudragit® E100. Subsequently, a dry suspension was prepared from the SD of CLA. In conclusion, this work illustrated the importance of HME for preparing amorphous SD of CLA, which can solve the problems of bitterness-masking and poor solubility. It is also significant for the development of compliant pediatric formulations.


Assuntos
Claritromicina , Solubilidade , Suspensões , Paladar , Paladar/efeitos dos fármacos , Claritromicina/química , Claritromicina/farmacologia , Suspensões/química , Tecnologia de Extrusão por Fusão a Quente , Polímeros/química , Composição de Medicamentos , Temperatura Alta , Acrilatos
2.
Environ Res ; 239(Pt 1): 117217, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37775002

RESUMO

Marine organic aerosols play crucial roles in global climatic systems. However, their chemical properties and relationships with various potential organic sources still need clarification. This study employed high-resolution mass spectrometry to investigate the identity, origin, and transportation of organic aerosols in pristine Antarctic environments (King Sejong Station; 62.2°S, 58.8°W), where complex ocean-cryosphere-atmosphere interactions occur. First, we classified the aerosol samples into three clusters based on their air mass transport history. Next, we investigated the relationship between organic aerosols and their potential sources, including organic matter dissolved in the open ocean, coastal waters, and runoff waters. Cluster 1 (C1), in which the aerosols mainly originated from the open ocean area (i.e., pelagic zone-influenced), exhibited a higher abundance of lipid-like and protein-like organic aerosols than cluster 3 (C3), with ratios 1.8- and 1.6-times higher, respectively. In contrast, C3, characterized by longer air mass retention over sea ice and land areas (i.e., inshore-influenced), had higher lignin- and condensed aromatic structures (CAS)-like organic aerosols by 2.2- and 3.4-times compared to C1. Cluster 2 (C2) has intermediate characteristics between C1 and C3 concerning the chemical properties of the aerosols and air mass travel history. Notably, the chemical properties of the aerosols assigned to C1 are closely related to those of phytoplankton-derived organics enriched in the open ocean. In contrast, those of C3 are comparable to those of terrestrial plant-derived organics enriched in coastal and runoff waters. These findings help evaluate the source-dependent properties of organic aerosols in changing Antarctic environment.


Assuntos
Atmosfera , Camada de Gelo , Regiões Antárticas , Aerossóis , Lignina
3.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108186

RESUMO

Lesioned tissue requires synchronous control of disease and regeneration progression after surgery. It is necessary to develop therapeutic and regenerative scaffolds. Here, hyaluronic acid (HA) was esterified with benzyl groups to prepare hyaluronic acid derivative (HA-Bn) nanofibers via electrospinning. Electrospun membranes with average fiber diameters of 407.64 ± 124.8 nm (H400), 642.3 ± 228.76 nm (H600), and 841.09 ± 236.86 nm (H800) were obtained by adjusting the spinning parameters. These fibrous membranes had good biocompatibility, among which the H400 group could promote the proliferation and spread of L929 cells. Using the postoperative treatment of malignant skin melanoma as an example, the anticancer drug doxorubicin (DOX) was encapsulated in nanofibers via hybrid electrospinning. The UV spectroscopy of DOX-loaded nanofibers (HA-DOX) revealed that DOX was successfully encapsulated, and there was a π-π interaction between aromatic DOX and HA-Bn. The drug release profile confirmed the sustained release of about 90%, achieved within 7 days. In vitro cell experiments proved that the HA-DOX nanofiber had a considerable inhibitory effect on B16F10 cells. Therefore, the HA-Bn electrospun membrane could facilitate the potential regeneration of injured skin tissues and be incorporated with drugs to achieve therapeutic effects, offering a powerful approach to developing therapeutic and regenerative biomaterial.


Assuntos
Antineoplásicos , Nanofibras , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Ácido Hialurônico/química , Nanofibras/química , Doxorrubicina/farmacologia , Doxorrubicina/química
4.
Biomacromolecules ; 23(12): 5202-5212, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36287618

RESUMO

Poor antitumor drug penetration into tumor tissues is a global challenge in clinical cancer treatment. Here, we reported a smart multistage "Trojan Horse"-inspired bovine serum albumin (BSA)-coated liposome (HBM), including the mimics of capsid and secondary BSA-coated polymeric nanoparticles (NPs) for enhancing tumor penetration and antitumor efficacy. These drug-loaded polymeric NPs possess a capsid-like component, a well-distributed nanostructure (size: 190.1 ± 4.98 nm, PDI: 0.259), and an excellent drug loading content (15.85 ± 1.36%). Meaningfully, after the smart multistage BSA-coated liposome targeted the tumor tissue, the mimics of capsid were "taken off" under the condition of tumor-specific enzymes, releasing "Heart" BSA-modified secondary NPs to increase the ability to penetrate tumor cells for enhancing antitumor efficacy. As expected, the HBM efficiently achieves high drug penetration into PAN02 tumor cells. Moreover, compared to free DOX and HM (HBM without BSA) NPs, DOX/HBM NPs exhibited the strongest tumor penetration and the highest cytotoxicity against PAN02 tumor cells both in vitro (IC50 = 0.141 µg/mL) and in vivo. This smart multistage "Trojan Horse"-inspired BSA-coated liposome should provide a new hathpace for further development of polymeric NPs in clinical treatment.


Assuntos
Nanopartículas , Neoplasias , Humanos , Soroalbumina Bovina , Lipossomos/uso terapêutico , Portadores de Fármacos/uso terapêutico , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
5.
J Nanobiotechnology ; 20(1): 476, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369077

RESUMO

Multidrug resistance (MDR) has been restricting the efficacy of chemotherapy, which mainly include pump resistance and non-pump resistance. In order to fight overall MDR, a novel targeted gene/drug co-deliver nano system is developed, which can suppress the drug efflux pumps and modulate autophagy to overcoming both pump and non-pump resistance. Here, small interfere RNA (siRNA) is incorporated into polymer-drug conjugates (PEI-PTX, PP) which are composed of polyethyleneimine (PEI) and paclitaxel (PTX) via covalent bonds, and hyaluronic acid (HA) is coated on the surface of PP/siRNA to achieve long blood cycle and CD44-targeted delivery. The RNA interference to mdr1 gene is combined with autophagy inhibition by PP, which efficiently facilitate apoptosis of Taxol-resistant lung cancer cells (A549/T). Further study indicates that PEI in PP may play a significant role to block the autophagosome-lysosome fusion process by means of alkalizing lysosomes. Both in vitro and in vivo studies confirm that the nanoassemblies can successfully deliver PTX and siRNA into tumor cells and significantly inhibited A549/T tumor growth. In summary, the polymeric nanoassemblies provide a potential strategy for combating both pump and non-pump resistance via the synergism of RNAi and autophagy modulation.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Humanos , RNA Interferente Pequeno/farmacologia , Resistencia a Medicamentos Antineoplásicos , Resistência a Múltiplos Medicamentos , Paclitaxel/farmacologia , Paclitaxel/química , Polietilenoimina/química , Neoplasias/tratamento farmacológico , Autofagia , Linhagem Celular Tumoral , Nanopartículas/química
6.
Biodegradation ; 33(1): 1-16, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35025000

RESUMO

Petroleum-based plastics (PBP) with different properties have been developed to suit various needs of modern lives. Nevertheless, these well-developed properties also present the double-edged sword effect that significantly threatens the sustainability of the environment. This work focuses on the impact of microbial cultivating conditions (the elementary compositions and temperature) to provide insightful information for the process optimization of microbial degradation. The major elementary compositions in cultivation media and temperature from the literature were radically reviewed and assessed using the constructed supervised machine learning algorithm. Fifty-two literatures were collected as a training dataset to investigate the impact of major chemical elements and cultivation temperature upon PBP biodegradation. Among six singular parameters (NH4+, K+, PO43-, Mg2+, Ca2+, and temperature) and thirty corresponding binary parameters, four singular (NH4+, K+, PO43-, and Mg2+) and six binary parameters (NH4+/K+, NH4+/PO43-, NH4+/Ca2+, K+/PO43-, PO43-/Mg2+, Mg2+/Temp) were identified as statistically significant towards microbial degradation through analysis of variance (ANOVA). The binary effect (PO43-/Mg2+) is found to be the most statistically significant towards the microbial degradation of PBP. The concentration range, which locates at 0.1-0.6 g/L for Mg2+ and 0-2.8 g/L for PO43-, was identified to contribute to the maximum PBP biodegradation. Among all the investigated elements, Mg2+ is the only element that is statistically and significantly associated with the variations of cultivation temperature. The optimal preparation conditions within ± 20% uncertainties based upon the range of collected literature reports are recommended. Five representative cultivation elementary compositions (NH4+, K+, PO43-, Mg2+, and Ca2+) and temperature were reviewed from fifty two different literature reports to investigate their impacts on the microbial degradation of PBP using supervised machine learning algorithm. The optimal cultivation conditions based upon collected literature reports to achieve biodegradation over 80% were identified.


Assuntos
Petróleo , Biodegradação Ambiental , Plásticos , Temperatura
7.
Chem Soc Rev ; 50(10): 6042-6093, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34027943

RESUMO

Transformation of biomass to chemicals and fuels is a long-term goal in both science and industry. However, high cost is one of the major obstacles to the industrialization of this sustainable technology. Thus, developing catalysts with high activity and low-cost is of great importance for biomass conversion. The last two decades have witnessed the increasing achievement of the use of earth-abundant 3d-transition-metals in catalysis due to their low-cost, high efficiency and excellent stability. Here, we aim to review the fast development and recent advances of 3d-metal-based catalysts including Cu, Fe, Co, Ni and Mn in lignocellulosic biomass conversion. Moreover, present research trends and invigorating perspectives on future development are given.


Assuntos
Lignina/química , Elementos de Transição/química , Biomassa , Carboidratos/química , Catálise , Furanos/química , Hidrogenação , Ácidos Levulínicos/química , Lignina/metabolismo , Magnetismo , Oxirredução
8.
Molecules ; 27(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684314

RESUMO

The contents of cellulose and hemicellulose (C and H) in corn stover (CS) have an important influence on its biochemical transformation and utilization. To rapidly detect the C and H contents in CS by near-infrared spectroscopy (NIRS), the characteristic wavelength selection algorithms of backward partial least squares (BIPLS), competitive adaptive reweighted sampling (CARS), BIPLS combined with CARS, BIPLS combined with a genetic simulated annealing algorithm (GSA), and CARS combined with a GSA were used to select the wavelength variables (WVs) for C and H, and the corresponding regression correction models were established. The results showed that five wavelength selection algorithms could effectively eliminate irrelevant redundant WVs, and their modeling performance was significantly superior to that of the full spectrum. Through comparison and analysis, it was found that CARS combined with GSA had the best comprehensive performance; the predictive root mean squared errors of the C and H regression model were 0.786% and 0.893%, and the residual predictive deviations were 3.815 and 12.435, respectively. The wavelength selection algorithm could effectively improve the accuracy of the quantitative analysis of C and H contents in CS by NIRS, providing theoretical support for the research and development of related online detection equipment.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Zea mays , Algoritmos , Celulose , Análise dos Mínimos Quadrados , Polissacarídeos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
9.
Catheter Cardiovasc Interv ; 97 Suppl 2: 988-995, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33734575

RESUMO

OBJECTIVES: This study sought to compare the efficacy and clinical safety of the LONGTY drug-coated balloon (DCB) with those of SeQuent Please DCB in patients with in-stent restenosis (ISR). BACKGROUND: Although DCB technologies have evolved, little is known about the clinical efficacy of the new-generation LONGTY DCB. METHODS: This was a prospective, multicenter, randomized, noninferiority trial comparing LONGTY DCB with SeQuent Please DCB in patients with ISR. The primary endpoint was target lesion late lumen loss at 9 months' follow-up. RESULTS: A total of 211 patients with ISR from 13 Chinese sites were included (LONGTY DCB, n = 105; SeQuent Please DCB, n = 106). Device success was achieved in all patients. At the 9 month angiographic follow-up, target lesion late lumen loss was 0.35 ± 0.42 mm with LONGTY and 0.38 ± 0.45 mm with SeQuent Please (p for noninferiority <.001). The target lesion revascularization rates at 1 year were similar in both DCB groups (15.24 vs. 13.21%; p = .673). Over an extended follow-up of 2 years, the clinical endpoints, including cardiac death, myocardial infarction, and thrombus rate, were extremely low and similar in both groups. CONCLUSIONS: In this multicenter, head-to-head, randomized trial, the new-generation LONGTY DCB was noninferior to the SeQuent Please DCB for the primary endpoint of target lesion late lumen loss at 9 months.


Assuntos
Angioplastia Coronária com Balão , Fármacos Cardiovasculares , Reestenose Coronária , Stents Farmacológicos , Angioplastia Coronária com Balão/efeitos adversos , Fármacos Cardiovasculares/efeitos adversos , China , Materiais Revestidos Biocompatíveis , Reestenose Coronária/diagnóstico por imagem , Reestenose Coronária/etiologia , Reestenose Coronária/terapia , Humanos , Paclitaxel/efeitos adversos , Estudos Prospectivos , Fatores de Tempo , Resultado do Tratamento
10.
Macromol Rapid Commun ; 42(14): e2100154, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34142406

RESUMO

The hierarchically bicontinuous polystyrene monoliths (HBPMs) with homogeneous skeletons and glycopolymer surfaces are fabricated for the first time based on the medium internal phase emulsion (MIPE) templating method via activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP). The synergistic self-assembly of amphiphilic diblock glycopolymer (ADG) and Pluronic F127 (PF127) at the oil/water interface via hydrogen bonding interaction contributes to the formation of bicontinuous MIPE with deformed neighboring water droplets, resulting in the highly interconnected HBPM after polymerization. There is a bimodal pore size distribution in the HBPM, that is, through pores (150-5000 nm) and mesopores (10-150 nm). The HBPMs as prepared show excellent biocompatibility, homogeneous skeletons, strong mechanical strength, and high bed permeability, overcoming the practical limitations of the second generation of polystyrene (PS) monoliths. Glycoprotein concanavalin A (Con A) can be easily and quickly separated by the HBPM in hydrophilic interaction chromatography (HILIC) mode. These results suggest the HBPMs have great potentials in catalysis, separations, and biomedical applications.


Assuntos
Poliestirenos , Esqueleto , Concanavalina A , Interações Hidrofóbicas e Hidrofílicas , Polimerização
11.
J Nanobiotechnology ; 19(1): 140, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001157

RESUMO

Synergistic chemo-photodynamic therapy has garnered attention in the field of cancer treatment. Here, a pH cascade-responsive micellar nanoplatform with nucleus-targeted ability, for effective synergistic chemo-photodynamic cancer treatment, was fabricated. In this micellar nanoplatform, 5-(4-carboxyphenyl)-10,15,20-triphenylporphyrin (Por), a photodynamic therapy (PDT) agent was utilized for carrying the novel anticancer drug GNA002 to construct a hydrophobic core, and cyclic RGD peptide (cRGD)-modified polyethylene glycol (PEG) (cRGD-PEG) connected the cell-penetrating peptide hexaarginine (R6) through a pH-responsive hydrazone bond (cRGD-PEG-N = CH-R6) to serve as a hydrophilic shell for increasing blood circulation time. After passively accumulating in tumor sites, the self-assembled GNA002-loaded nanoparticles were actively internalized into cancer cells via the cRGD ligands. Once phagocytosed by lysosomes, the acidity-triggered detachment of the cRGD-PEG shell led to the formation of R6-coated secondary nanoparticles and subsequent R6-mediated nucleus-targeted drug delivery. Combined with GNA002-induced nucleus-specific chemotherapy, reactive oxygen species produced by Por under 532-nm laser irradiation achieved a potent synergistic chemo-photodynamic cancer treatment. Moreover, our in vitro and in vivo anticancer investigations revealed high cancer-suppression efficacy of this ideal multifunctional nanoplatform, indicating that it could be a promising candidate for synergistic anticancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Neoplasias/terapia , Fotoquimioterapia/métodos , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Lisossomos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Peptídeos Cíclicos , Fármacos Fotossensibilizantes/farmacologia , Polietilenoglicóis/química , Espécies Reativas de Oxigênio
12.
Appl Opt ; 60(15): 4282-4290, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34143114

RESUMO

The feasibility of near-infrared spectroscopy (NIRS) combined with chemometrics for the rapid detection of the cellulose and hemicellulose contents in corn stover is discussed. Competitive adaptive reweighted sampling (CARS) and genetic simulated annealing algorithm (GSA) were combined (CARS-GSA) to select the characteristic wavelengths of cellulose and hemicellulose and to reduce the dimensionality and multicollinearity of the NIRS data. The whole spectra contained 1845 wavelength variables. After CARS-GSA optimization, the number of characteristic wavelengths of cellulose (hemicellulose) was reduced to 152 (260), accounting for 8.24% (14.09%) of all wavelengths. The coefficients of determination of the regression models for predicting the cellulose and hemicellulose contents were 0.968 and 0.996, the root mean square errors of prediction (RMSEPs) were 0.683 and 0.648, and the residual predictive deviations (RPDs) were 5.213 and 16.499, respectively. The RMSEP of the cellulose and hemicellulose regression models was 0.152 and 0.190 lower for CARS-GSA than for the full-spectrum, and the RPD was increased by 0.949 and 3.47, respectively. The results showed that the CARS-GSA model substantially reduced the number of characteristic wavelengths and significantly improved the predictive ability of the regression model.


Assuntos
Celulose/análise , Quimiometria/métodos , Polissacarídeos/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Zea mays/química , Algoritmos
13.
J Nanobiotechnology ; 17(1): 113, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699100

RESUMO

BACKGROUND: Synergistic therapy of tumor is a promising way in curing cancer and in order to achieve effective tumor therapy with real-time drug release monitoring, dynamic cellular imaging and antitumor activity. RESULTS: In this work, a polymeric nanoparticle with Forster resonance energy transfer (FRET) effect and chemo-photodynamic properties was fabricated as the drug vehicle. An amphiphilic polymer of cyclo(RGDfCSH) (cRGD)-poly(ethylene glycol) (PEG)-Poly(L-histidine) (PH)-poly(ε-caprolactone) (PCL)-Protoporphyrin (Por)-acting as both a photosensitizer for photodynamic therapy (PDT) and absorption of acceptor in FRET was synthesized and self-assembled into polymeric nanoparticles with epirubicin (EPI)-acting as an antitumor drug for chemotherapy and fluorescence of donor in FRET. Spherical EPI-loaded nanoparticles with the average size of 150 ± 2.4 nm was procured with negatively charged surface, pH sensitivity and high drug loading content (14.9 ± 1.5%). The cellular uptake of EPI-loaded cRGD-PEG-PH-PCL-Por was monitored in real time by the FRET effect between EPI and cRGD-PEG-PH-PCL-Por. The polymeric nanoparticles combined PDT and chemotherapy showed significant anticancer activity both in vitro (IC50 = 0.47 µg/mL) and better therapeutic efficacy than that of free EPI in vivo. CONCLUSIONS: This work provided a versatile strategy to fabricate nanoassemblies for intracellular tracking of drug release and synergistic chemo-photodynamic therapy.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Epirubicina/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/administração & dosagem , Animais , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/uso terapêutico , Liberação Controlada de Fármacos , Epirubicina/farmacocinética , Epirubicina/uso terapêutico , Transferência Ressonante de Energia de Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos BALB C , Nanopartículas/uso terapêutico , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/uso terapêutico , Polímeros/administração & dosagem , Polímeros/farmacocinética , Polímeros/uso terapêutico
14.
J Appl Clin Med Phys ; 20(7): 176-183, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31207035

RESUMO

Polyvinyl chloride (PVC) is a commonly used tissue-mimicking material (TMM) for phantom construction using 3D printing technology. PVC-based TMMs consist of a mixture of PVC powder and dioctyl terephthalate as a softener. In order to allow the clinical use of a PVC-based phantom use across CT and magnetic resonance imaging (MRI) imaging platforms, we evaluated the mechanical and physical imaging characteristics of ten PVC samples. The samples were made with different PVC-softener ratios to optimize phantom bioequivalence with physiologic human tissue. Phantom imaging characteristics, including computed tomography (CT) number, MRI relaxation time, and mechanical properties (e.g., Poisson's ratio and elastic modulus) were quantified. CT number varied over a range of approximately -10 to 110 HU. The relaxation times of the T1-weighted and T2-weighted images were 206.81 ± 17.50 and 20.22 ± 5.74 ms, respectively. Tensile testing was performed to evaluate mechanical properties on the three PVC samples that were closest to human tissue. The elastic moduli for these samples ranged 7.000-12.376 MPa, and Poisson's ratios were 0.604-0.644. After physical and imaging characterization of the various PVC-based phantoms, we successfully produced a bioequivalent phantom compatible with multimodal imaging platforms for machine calibration and image optimization/benchmarking. By combining PVC with 3D printing technologies, it is possible to construct imaging phantoms simulating human anatomies with tissue equivalency.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/instrumentação , Imagens de Fantasmas , Cloreto de Polivinila/química , Radiografia Torácica , Tomografia Computadorizada por Raios X/métodos , Humanos , Imageamento por Ressonância Magnética/instrumentação , Tomografia Computadorizada por Raios X/instrumentação
15.
Int J Mol Sci ; 20(10)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137823

RESUMO

The rubber grass Taraxacum kok-saghyz (TKS) contains large amounts of natural rubber (cis-1,4-polyisoprene) in its enlarged roots and it is an alternative crop source of natural rubber. Natural rubber biosynthesis (NRB) and storage in the mature roots of TKS is a cascade process involving many genes, proteins and their cofactors. The TKS genome has just been annotated and many NRB-related genes have been determined. However, there is limited knowledge about the protein regulation mechanism for NRB in TKS roots. We identified 371 protein species from the mature roots of TKS by combining two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS). Meanwhile, a large-scale shotgun analysis of proteins in TKS roots at the enlargement stage was performed, and 3545 individual proteins were determined. Subsequently, all identified proteins from 2-DE gel and shotgun MS in TKS roots were subject to gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and most proteins were involved in carbon metabolic process with catalytic activity in membrane-bounded organelles, followed by proteins with binding ability, transportation and phenylpropanoid biosynthesis activities. Fifty-eight NRB-related proteins, including eight small rubber particle protein (SRPP) and two rubber elongation factor(REF) members, were identified from the TKS roots, and these proteins were involved in both mevalonate acid (MVA) and methylerythritol phosphate (MEP) pathways. To our best knowledge, it is the first high-resolution draft proteome map of the mature TKS roots. Our proteomics of TKS roots revealed both MVA and MEP pathways are important for NRB, and SRPP might be more important than REF for NRB in TKS roots. These findings would not only deepen our understanding of the TKS root proteome, but also provide new evidence on the roles of these NRB-related proteins in the mature TKS roots.


Assuntos
Hemiterpenos/biossíntese , Látex/biossíntese , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteoma/metabolismo , Taraxacum/metabolismo , Hemiterpenos/genética , Proteínas de Plantas/genética , Proteoma/genética , Taraxacum/genética
16.
Int J Mol Sci ; 20(20)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31614967

RESUMO

Rubber particles are a specific organelle for natural rubber biosynthesis (NRB) and storage. Ethylene can significantly improve rubber latex production by increasing the generation of small rubber particles (SRPs), regulating protein accumulation, and activating many enzyme activities. We conducted a quantitative proteomics study of different SRPs upon ethylene stimulation by differential in-gel electrophoresis (DIGE) and using isobaric tags for relative and absolute quantification (iTRAQ) methods. In DIGE, 79 differentially accumulated proteins (DAPs) were determined as ethylene responsive proteins. Our results show that the abundance of many NRB-related proteins has been sharply induced upon ethylene stimulation. Among them, 23 proteins were identified as rubber elongation factor (REF) and small rubber particle protein (SRPP) family members, including 16 REF and 7 SRPP isoforms. Then, 138 unique phosphorylated peptides, containing 129 phosphorylated amino acids from the 64 REF/SRPP family members, were identified, and most serine and threonine were phosphorylated. Furthermore, we identified 226 DAPs from more than 2000 SRP proteins by iTRAQ. Integrative analysis revealed that almost all NRB-related proteins can be detected in SRPs, and many proteins are positively responsive to ethylene stimulation. These results indicate that ethylene may stimulate latex production by regulating the accumulation of some key proteins. The phosphorylation modification of REF and SRPP isoforms might be crucial for NRB, and SRP may act as a complex natural rubber biosynthetic machine.


Assuntos
Antígenos de Plantas/genética , Hevea/genética , Látex/biossíntese , Proteínas de Plantas/genética , Sequência de Aminoácidos , Etilenos/metabolismo , Hevea/metabolismo , Proteoma/genética , Proteômica , Borracha/química , Borracha/metabolismo
17.
Chemistry ; 23(47): 11346-11356, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28653773

RESUMO

Molybdenum disulfide (MoS2 ) nanosheets have attracted significant attention due to their photothermal properties, but the poor solubility and colloidal stability limited their further application in biomedical field. Here, we report a targeted photothermal controllable nanocarrier consisting of MoS2 nanosheets modified with block copolymer P(OEG-A)-b-P(VBA-co-KH570) and targeting ligand transferrin. P(OEG-A)-b-P(VBA-co-KH570) is synthesized by RAFT polymerization and utilized not only to improve the solubility of MoS2 nanosheets but also efficiently load the anti-cancer drug doxorubicin (DOX) through an acid-cleavable Schiff base linker. Thiol-functionalized transferrin (Tf-SH) is anchored onto the surface of MoS2 nanosheets by the formation of disulfide bonds, which could further enhance the cellular uptake of DOX and MoS2 to HepG2 cells for high-efficiency synergetic therapy. The drug release experiments exhibited the minimal release of DOX at room temperature and neutral pH, and the maximal drug release of 53 % at acidic tumor pH and hyperthermia condition after 48 h. In addition, the DOX-loaded, Tf-SH and P(OEG-A)-b-P(VBA-co-KH570) modified MoS2 (DOX-POVK-MoS2 -Tf) showed better a therapeutic effect than DOX-POVK-MoS2 and POVK-MoS2 , probably owing to the combined effects of target-directed uptake, acid-triggered drug release, and NIR induced localized heating, which suggest the designed MoS2 nanocarriers are promising for applications in multi-modal cancer therapy.


Assuntos
Portadores de Fármacos/química , Molibdênio/química , Nanoestruturas/química , Óxidos/química , Polímeros/química , Transferrina/química , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/toxicidade , Liberação Controlada de Fármacos , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Raios Infravermelhos , Microscopia de Força Atômica , Solubilidade , Temperatura
18.
Int J Mol Sci ; 18(5)2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28468331

RESUMO

Rubber elongation factor (REF) and small rubber particle protein (SRPP) are two key factors for natural rubber biosynthesis. To further understand the roles of these proteins in rubber formation, six different genes for latex abundant REF or SRPP proteins, including REF138,175,258 and SRPP117,204,243, were characterized from Hevea brasiliensis Reyan (RY) 7-33-97. Sequence analysis showed that REFs have a variable and long N-terminal, whereas SRPPs have a variable and long C-terminal beyond the REF domain, and REF258 has a ß subunit of ATPase in its N-terminal. Through two-dimensional electrophoresis (2-DE), each REF/SRPP protein was separated into multiple protein spots on 2-DE gels, indicating they have multiple protein species. The abundance of REF/SRPP proteins was compared between ethylene and control treatments or among rubber tree clones with different levels of latex productivity by analyzing 2-DE gels. The total abundance of each REF/SRPP protein decreased or changed a little upon ethylene stimulation, whereas the abundance of multiple protein species of the same REF/SRPP changed diversely. Among the three rubber tree clones, the abundance of the protein species also differed significantly. Especially, two protein species of REF175 or REF258 were ethylene-responsive only in the high latex productivity clone RY 8-79 instead of in RY 7-33-97 and PR 107. Some individual protein species were positively related to ethylene stimulation and latex productivity. These results suggested that the specific protein species could be more important than others for rubber production and post-translational modifications might play important roles in rubber biosynthesis.


Assuntos
Etilenos/farmacologia , Hevea/efeitos dos fármacos , Látex/biossíntese , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Hevea/metabolismo , Proteínas de Plantas/genética , Proteoma/genética
19.
Electrophoresis ; 37(22): 2930-2939, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27699805

RESUMO

The extraction of high-purity proteins from the washing solution (WS) of rubber particles (also termed latex-producing organelles) from laticifer cells in rubber tree for proteomic analysis is challenging due to the low concentration of proteins in the WS. Recent studies have revealed that proteins in the WS might play crucial roles in natural rubber biosynthesis. To further examine the involvement of these proteins in natural rubber biosynthesis, we designed an efficiency method to extract high-purity WS proteins. We improved our current borax and phenol-based method by adding reextraction steps with phenol (REP) to improve the yield from low protein concentration samples. With this new method, we extracted WS proteins that were suitable for proteomics. Indeed, compared to the original borax and phenol-based method, the REP method improved both the quality and quantity of isolated proteins. By repeatedly extracting from low protein concentration solutions using the same small amount of phenol, the REP method yielded enough protein of sufficiently high-quality from starting samples containing less than 0.02 mg of proteins per milliliter. This method was successfully applied to extract the rubber particle proteins from the WS of natural rubber latex samples. The REP-extracted WS proteins were resolved by 2DE, and 28 proteins were positively identified by MS. This method has the potential to become widely used for the extraction of proteins from low protein concentration solutions for proteomic analysis.


Assuntos
Espectrometria de Massas/métodos , Proteínas de Plantas/análise , Proteínas de Plantas/isolamento & purificação , Proteômica/métodos , Borracha/química , Boratos , Fracionamento Químico , Eletroforese em Gel Bidimensional/métodos , Fenol
20.
Nano Lett ; 15(5): 3195-203, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25830301

RESUMO

Transparency has never been integrated into freestanding flexible graphene paper (FF-GP), although FF-GP has been discussed extensively, because a thin transparent graphene sheet will fracture easily when the template or substrate is removed using traditional methods. Here, transparent FF-GP (FFT-GP) was developed using NaCl as the template and was applied in transparent and stretchable supercapacitors. The capacitance was improved by nearly 1000-fold compared with that of the laminated or wrinkled chemical vapor deposition graphene-film-based supercapacitors.


Assuntos
Grafite/química , Nanoestruturas/química , Cloreto de Sódio/química , Condutividade Elétrica , Membranas Artificiais , Papel , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA