Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Am Chem Soc ; 140(10): 3592-3602, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29446631

RESUMO

Metabolic labeling of glycans with bioorthogonal reporters has been widely used for glycan imaging and glycoproteomic profiling. One of the intrinsic limitations of metabolic glycan labeling is the lack of cell-type selectivity. The recently developed liposome-assisted bioorthogonal reporter (LABOR) strategy provides a promising means to overcome this limitation, but the mechanism of LABOR has not been investigated in detail. In this work, we performed a mechanistic study on LABOR and explored its multiplexing capability. Our studies support an endocytosis-salvage mechanism. The ligand-targeted liposomes encapsulating azidosugars are internalized into the endosome via the receptor-mediated endocytosis. Unlike the conventional drug delivery, LABOR does not rely on the endosomal escape pathways. Rather, the liposomes are allowed to enter the lysosome, inside which the azidosugars are released from the liposomes. The released azidosugars then intercept the salvage pathways of monosaccharides and get transported into the cytosol by lysosomal sugar transporters. Based on this mechanism, we expanded the scope of LABOR by evaluating a series of ligand-receptor pairs for targeting sialoglycans in various cell types. Different ligand types including small molecules, antibodies, aptamers, and peptides could be easily implemented into LABOR. Finally, we demonstrated that the sialoglycans in two distinct cell populations in a co-cultured system could be selectively labeled with two distinct chemical reporters by performing a multiplexed LABOR labeling.


Assuntos
Polissacarídeos/química , Células HeLa , Humanos , Lipossomos/química , Lipossomos/metabolismo , Polissacarídeos/metabolismo
2.
Adv Mater ; 36(26): e2400346, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594598

RESUMO

Bioelectricity plays a crucial role in organisms, being closely connected to neural activity and physiological processes. Disruptions in the nervous system can lead to chaotic ionic currents at the injured site, causing disturbances in the local cellular microenvironment, impairing biological pathways, and resulting in a loss of neural functions. Electromagnetic stimulation has the ability to generate internal currents, which can be utilized to counter tissue damage and aid in the restoration of movement in paralyzed limbs. By incorporating implanted materials, electromagnetic stimulation can be targeted more accurately, thereby significantly improving the effectiveness and safety of such interventions. Currently, there have been significant advancements in the development of numerous promising electromagnetic stimulation strategies with diverse materials. This review provides a comprehensive summary of the fundamental theories, neural stimulation modulating materials, material application strategies, and pre-clinical therapeutic effects associated with electromagnetic stimulation for neural repair. It offers a thorough analysis of current techniques that employ materials to enhance electromagnetic stimulation, as well as potential therapeutic strategies for future applications.


Assuntos
Materiais Biocompatíveis , Humanos , Animais , Materiais Biocompatíveis/química , Terapia por Estimulação Elétrica/métodos , Terapia por Estimulação Elétrica/instrumentação
3.
J Mater Chem B ; 12(23): 5722-5733, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38764419

RESUMO

Hepatic ischemia-reperfusion injury (IRI) is a common pathological process during hepatectomy and liver transplantation and the two primary reasons for hepatic IRI are reactive oxygen species (ROS)-mediated oxidative stress and excessive inflammatory responses. Herein, a novel antioxidant nanodrug (A-MPDA@Fe3O4@PVP) is prepared by employing L-arginine-doped mesoporous polydopamine (A-MPDA) nanoparticles as the carrier for deposition of ultra-small ferric oxide (Fe3O4) nanoparticles and further surface modification with polyvinylpyrrolidone (PVP). A-MPDA@Fe3O4@PVP not only effectively reduces the aggregation of ultra-small Fe3O4, but also simultaneously replicates the catalytic activity of catalase (CAT) and superoxide dismutase (SOD). A-MPDA@Fe3O4@PVP with good antioxidant activity can rapidly remove various toxic reactive oxygen species (ROS) and effectively regulate macrophage polarization in vitro. In the treatment of hepatic IRI, A-MPDA@Fe3O4@PVP effectively alleviates ROS-induced oxidative stress, reduces the expression of inflammatory factors, and prevents apoptosis of hepatocytes through immune regulation. A-MPDA@Fe3O4@PVP can further protect liver tissue by activating the PPARγ/NF-κB pathway. This multiplex antioxidant enzyme therapy can provide new references for the treatment of IRI in organ transplantation and other ROS-related injuries such as fibrosis, cirrhosis, and bacterial and hepatic viral infection.


Assuntos
NF-kappa B , PPAR gama , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Animais , NF-kappa B/metabolismo , PPAR gama/metabolismo , Camundongos , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Polímeros/química , Polímeros/farmacologia , Povidona/química , Povidona/farmacologia , Indóis/química , Indóis/farmacologia , Masculino , Antioxidantes/farmacologia , Antioxidantes/química , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7 , Nanopartículas de Magnetita/química , Humanos
4.
Adv Mater ; 36(11): e2307695, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38150667

RESUMO

Treatment of diabetic wounds is a significant clinical challenge due to the massive infections caused by bacteria. In this study, multifunctional glycol chitosan and polydopamine-coated BiO1-x I (GPBO) nanoparticles (NPs) with near-infrared (NIR) photothermal and photocatalytic abilities are prepared. When infection occurs, the local microenvironment becomes acidic, and the pH-switchable GPBO can target the bacteria of the wound site. The NIR-assisted GPBO treatment exhibits anti-bacterial effects with fast response, high efficiency, and long duration to Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. GPBO achieves excellent photothermal imaging and CT imaging of the mouse subcutaneous abscess model. With the assistance of NIR irradiation, the GPBO promotes the healing of the diabetic wound model with the effects of anti-bacteria, anti-inflammation, the M2 polarization promotion of macrophages, and angiogenesis. This is the first-time report of nano-sized BiO1-x I. The synthesis and selected application for the imaging and targeted therapy of diabetic wounds are presented. This study offers an example of the NP-assisted precise diagnosis and therapy of bacterial infection diseases.


Assuntos
Quitosana , Diabetes Mellitus , Indóis , Nanopartículas , Polímeros , Camundongos , Animais , Bismuto , Oxigênio/farmacologia , Nanopartículas/uso terapêutico , Bactérias , Escherichia coli
5.
Front Cell Infect Microbiol ; 13: 1193198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900318

RESUMO

Introduction: P. gingivalis (W83), as the keystone pathogen in chronic periodontitis, has been found to be tightly bound to systemic diseases. Outer membrane vesicles (OMVs) produced by P. gingivalis (W83) are thought to serve key functions in bacterial virulence and pathogenicity. This study aims to comprehend the biological functions of P. gingivalis OMVs isolated from different growth stages by comparing their physicochemical properties and pathogenicity. Methods: Protein composition was analyzed via isotope-labeled relative and absolute quantification (iTRAQ). Macrophage polarization and the expression of IL-6 and IL-1ß were detected. The proliferation, migration, osteogenic differentiation, and IL-1b/NLRP3 expression of periodontal ligament stem cells (PDLSCs) were evaluated. P. gingivalis/P. gingivalis OMVs-induced periodontal models were also constructed in Sprague Dawley rats. Results: The protein composition of P. gingivalis OMVs isolated from different growth stages demonstrated obvious differences ranging from 25 KDa to 75 KDa. In the results of flow cytometry, we found that in vitro experiments the M1 subtype of macrophages was more abundant in the late-log OMVs and stationary OMVs groups which boosted the production of inflammatory cytokines more than pre-log OMVs. Compared to pre-log OMVs, late-log OMVs and stationary OMVs had more pronounced inhibitory effects on proliferation, migration, and early osteogenesis of PDLSCs. The NLRP3 inflammasome was activated to a larger extent in the stationary OMVs group. Micro-computed tomography (Micro CT), hematoxylin-eosin staining (HE), and tartrate acid phosphatase (TRAP) results showed that the periodontal damage in the stationary OMVs group was worse than that in the pre-log OMVs and late-log OMVs group, but almost equal to that in the positive control group (P. gingivalis). Discussion: In general, both in vivo and in vitro experiments showed that late-log OMVs and stationary OMVs have more significant pathogenicity in periodontal disease.


Assuntos
Periodontite Crônica , Porphyromonas gingivalis , Ratos , Animais , Virulência , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteogênese , Microtomografia por Raio-X , Ratos Sprague-Dawley
6.
Int J Nanomedicine ; 18: 4683-4703, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608819

RESUMO

Purpose: Dental pulp stem cell-derived exosomes (DPSC-EXO), which have biological characteristics similar to those of metrocytes, have been found to be closely associated with tissue regeneration. Periodontitis is an immune inflammation and tissue destructive disease caused by plaque, resulting in alveolar bone loss and periodontal epithelial destruction. It is not clear whether DPSC-EXO can be used as an effective therapy for periodontal regeneration. The purpose of this study was not only to verify the effect of DPSC-EXO on reducing periodontitis and promoting periodontal tissue regeneration, but also to reveal the possible mechanism. Methods: DPSC-EXO was isolated by ultracentrifugation. Then it characterized by transmission electron microscope (TEM), nanoparticle tracking analysis (NTA) and Western Blot. In vitro, periodontal ligament stem cells (PDLSCs) were treated with DPSC-EXO, the abilities of cell proliferation, migration and osteogenic potential were evaluated. Furthermore, we detected the expression of IL-1ß, TNF-αand key proteins in the IL-6/JAK2/STAT3 signaling pathway after simulating the inflammatory environment by LPS. In addition, the effect of DPSC-EXO on the polarization phenotype of macrophages was detected. In vivo, the experimental periodontitis in rats was established and treated with DPSC-EXO or PBS. After 4 weeks, the maxillae were collected and detected by micro-CT and histological staining. Results: DPSC-EXO promoted the proliferation, migration and osteogenesis of PDLSCs in vitro. DPSC-EXO also regulated inflammation by inhibiting the IL-6/JAK2/STAT3 signaling pathway during acute inflammatory stress. In addition, the results showed that DPSC-EXO could polarize macrophages from the M1 phenotype to the M2 phenotype. In vivo, we found that DPSC-EXO could effectively reduce alveolar bone loss and promote the healing of the periodontal epithelium in rats with experimental periodontitis. Conclusion: DPSC-EXO plays an important role in inhibiting periodontitis and promoting tissue regeneration. This study provides a promising acellular therapy for periodontitis.


Assuntos
Perda do Osso Alveolar , Exossomos , Periodontite , Animais , Ratos , Ligamento Periodontal , Perda do Osso Alveolar/terapia , Polpa Dentária , Interleucina-6 , Osteogênese , Periodontite/terapia , Anti-Inflamatórios , Inflamação
7.
Front Endocrinol (Lausanne) ; 14: 1142327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305056

RESUMO

Background: Previous studies found that Jinlida granules could significantly reduce blood glucose levels and enhance the low-glucose action of metformin. However, the role of Jinlida in the standard-reaching rate of blood glucose and improving clinical symptoms has yet to be studied. We aimed to elaborate on the efficacy of Jinlida in type 2 diabetes (T2D) patients who experience clinical symptoms based on secondary analysis of a randomized controlled trial. Methods: Data were analyzed from a 12-week, randomized, placebo-controlled study of Jinlida. The standard-reaching rate of blood glucose, the symptom disappearance rate, the symptom improvement rate, the efficacy of single symptoms, and the total symptom score were evaluated. The correlation between HbA1c and the improvement of clinical symptoms was analyzed. Results: For 12 weeks straight, 192 T2D patients were randomly assigned to receive either Jinlida or a placebo. The treatment group showed statistically significant differences in the standard-reaching rate of HbA1c < 6.5% (p = 0.046) and 2hPG (< 10 mmol/L, 11.1 mmol/L) (p < 0.001), compared with the control group. The standard-reaching rate of HbA1c < 7% (p = 0.06) and FBG < 7.0 mmol/L (p = 0.079) were not significantly different between the treatment and control groups. Five symptoms exhibited a statistical difference in symptom disappearance rate (p < 0.05). All the symptoms exhibited a significant difference in symptom improvement rate (p < 0.05). The mean change in total symptom score from baseline to week 12 was -5.45 ± 3.98 in the treatment group and -2.38 ± 3.11 in the control group, with statistically significant differences (p < 0.001). No significant correlations were noted between symptom improvement and HbA1c after 12 weeks of continuous intervention with Jinlida granules or placebo. Conclusion: Jinlida granules can effectively improve the standard-reaching rate of blood glucose and clinical symptoms of T2D patients, including thirst, fatigue, increased eating with rapid hungering, polyuria, dry mouth, spontaneous sweating, night sweat, vexing heat in the chest, palms, and soles, and constipation. Jinlida granules can be used as an effective adjuvant treatment for T2D patients who experience those symptoms.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Metformina/uso terapêutico , Glicemia , Hemoglobinas Glicadas
8.
Tissue Eng Part C Methods ; 28(5): 214-227, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35442092

RESUMO

Femur head necrosis, also known as osteonecrosis of the femoral head (ONFH), is a widespread disabling pathology mostly affecting young and middle-aged population and one of the major causes of total hip arthroplasty in the elderly. Currently, there are limited number of different clinical or medication options for the treatment or the reversal of progressive ONFH, but their clinical outcomes are neither satisfactory nor consistent. In pursuit of more reliable therapeutic strategies for ONFH, including recently emerged tissue engineering and biomaterials approaches, in vivo animal models are extremely important for therapeutic efficacy evaluation and mechanistic exploration. Based on the better understanding of pathogenesis of ONFH, animal modeling method has evolved into three major routes, including steroid-, alcohol-, and injury/trauma-induced osteonecrosis, respectively. There is no consensus yet on a standardized ONFH animal model for tissue engineering and biomaterial research; therefore, appropriate animal modeling method should be carefully selected depending on research purposes and scientific hypotheses. In this work, mainstream types of ONFH animal model and their modeling techniques are summarized, showing both merits and demerits for each. In addition, current studies and experimental techniques of evaluating therapeutic efficacy on the treatment of ONFH using animal models are also summarized, along with discussions on future directions related to tissue engineering and biomaterial research. Impact statement Exploration of tissue engineering and biomaterial-based therapeutic strategy for the treatment of femur head necrosis is important since there are limited options available with satisfactory clinical outcomes. To promote the translation of these technologies from benchwork to bedside, animal model should be carefully selected to provide reliable results and clinical outcome prediction. Therefore, osteonecrosis of the femoral head animal modeling methods as well as associated tissue engineering and biomaterial research are overviewed and discussed in this work, as an attempt to provide guidance for model selection and optimization in tissue engineering and biomaterial translational studies.


Assuntos
Necrose da Cabeça do Fêmur , Animais , Materiais Biocompatíveis , Cabeça do Fêmur , Necrose da Cabeça do Fêmur/etiologia , Necrose da Cabeça do Fêmur/patologia , Necrose da Cabeça do Fêmur/terapia , Modelos Animais , Engenharia Tecidual
9.
Phys Rev Lett ; 105(8): 088101, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20868131

RESUMO

Stained end-grafted DNA molecules about 20 µm long are scraped away and stretched out by the spreading front of a bioadhesive vesicle. Tethered biotin ligands bind the vesicle bilayer to a streptavidin substrate, stapling the DNAs into frozen confinement paths. Image analysis of the stapled DNA gives access, within optical resolution, to the local stretching values of individual DNA molecules swept by the spreading front, and provides evidence of self-entanglements.


Assuntos
Adesivos/química , Materiais Biomiméticos/química , DNA/química , Fricção , Lipossomas Unilamelares/química , Animais , Imageamento Tridimensional , Conformação de Ácido Nucleico
10.
Methods Enzymol ; 598: 321-353, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29306441

RESUMO

Metabolic labeling of glycans with sugar chemical reporters (i.e., unnatural sugars bearing a bioorthogonal group), followed by bioorthogonal reaction with imaging probes or affinity tags, has enabled visualization and proteomic analysis of glycosylation in live cells and in living animals. This two-step metabolic glycan labeling strategy has emerged as a powerful tool for probing glycosylation, but suffers from a lack of cell-type selectivity. Here we describe liposome-assisted bioorthogonal reporter (LABOR), a liposome-assisted format of metabolic glycan labeling that allows for cell-selective and tissue-specific glycan imaging and glycoproteomic profiling. After a brief introduction of the principles and applications of LABOR, we provide detailed protocols for performing LABOR in cell culture and in living mice.


Assuntos
Indicadores e Reagentes/química , Lipossomos/química , Polissacarídeos/química , Proteômica/métodos , Coloração e Rotulagem/métodos , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Técnicas de Cocultura/instrumentação , Técnicas de Cocultura/métodos , Difusão Dinâmica da Luz/instrumentação , Difusão Dinâmica da Luz/métodos , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Glicosilação , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Ácido N-Acetilneuramínico/química , Imagem Óptica/instrumentação , Imagem Óptica/métodos , Polissacarídeos/metabolismo , Proteômica/instrumentação , Coloração e Rotulagem/instrumentação , Ensaios Antitumorais Modelo de Xenoenxerto/instrumentação , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
11.
Biochim Biophys Acta ; 1623(1): 29-32, 2003 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-12957714

RESUMO

Film-entrapped myoglobin exhibits well-defined electrochemistry which, upon ligand binding, displays a titratable redox potential shift. This effect has been observed to be highly dependent on the charged state of involved films. We have demonstrated that this approach may act as a model system for studies of molecular recognition between proteins and ligands.


Assuntos
Eletroquímica/métodos , Imidazóis/química , Membranas Artificiais , Mioglobina/química , Cetrimônio , Compostos de Cetrimônio/química , DNA/química , Ligantes , Substâncias Macromoleculares , Oxirredução , Fosfatidilcolinas/química , Polietilenoimina/química , Ligação Proteica , Dodecilsulfato de Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA