Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomed Microdevices ; 11(5): 1051-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19452279

RESUMO

Existing microfluidic devices, e.g. parallel plate flow chambers, do not accurately depict the geometry of microvascular networks in vivo. We have developed a synthetic microvascular network (SMN) on a polydimethalsiloxane (PDMS) chip that can serve as an in vitro model of the bifurcations, tortuosities, and cross-sectional changes found in microvascular networks in vivo. Microvascular networks from a cremaster muscle were mapped using a modified Geographical Information System, and then used to manufacture the SMNs on a PDMS chip. The networks were cultured with bovine aortic endothelial cells (BAEC), which reached confluency 3-4 days after seeding. Propidium iodide staining indicated viable and healthy cells showing normal behavior in these networks. Anti-ICAM-1 conjugated 2-mum microspheres adhered to BAEC cells activated with TNF-alpha in significantly larger numbers compared to control IgG conjugated microspheres. This preferential adhesion suggests that cultured cells retain an intact cytokine response in the SMN. This microfluidic system can provide novel insight into characterization of drug delivery particles and dynamic flow conditions in microvascular networks.


Assuntos
Biomimética/métodos , Vasos Sanguíneos/citologia , Técnicas Analíticas Microfluídicas/métodos , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Dimetilpolisiloxanos/química , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Humanos , Músculos/irrigação sanguínea , Fator de Necrose Tumoral alfa/farmacologia
2.
Biomed Microdevices ; 10(4): 585-95, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18327641

RESUMO

We have developed a methodology to study particle adhesion in the microvascular environment using microfluidic, image-derived microvascular networks on a chip accompanied by Computational Fluid Dynamics (CFD) analysis of fluid flow and particle adhesion. Microfluidic networks, obtained from digitization of in vivo microvascular topology were prototyped using soft-lithography techniques to obtain semicircular cross sectional microvascular networks in polydimethylsiloxane (PDMS). Dye perfusion studies indicated the presence of well-perfused as well as stagnant regions in a given network. Furthermore, microparticle adhesion to antibody coated networks was found to be spatially non-uniform as well. These findings were broadly corroborated in the CFD analyses. Detailed information on shear rates and particle fluxes in the entire network, obtained from the CFD models, were used to show global adhesion trends to be qualitatively consistent with current knowledge obtained using flow chambers. However, in comparison with a flow chamber, this method represents and incorporates elements of size and complex morphology of the microvasculature. Particle adhesion was found to be significantly localized near the bifurcations in comparison with the straight sections over the entire network, an effect not observable with flow chambers. In addition, the microvascular network chips are resource effective by providing data on particle adhesion over physiologically relevant shear range from even a single experiment. The microfluidic microvascular networks developed in this study can be readily used to gain fundamental insights into the processes leading to particle adhesion in the microvasculature.


Assuntos
Microcirculação/fisiologia , Técnicas Analíticas Microfluídicas/instrumentação , Adesividade , Materiais Revestidos Biocompatíveis/química , Desenho de Equipamento , Humanos , Imunoglobulina G/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Microesferas , Modelos Teóricos , Selectina-P/metabolismo , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA