Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 29(8): 1253-1273, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32129442

RESUMO

Some mutations affecting dynamin 2 (DNM2) can cause dominantly inherited Charcot-Marie-Tooth (CMT) neuropathy. Here, we describe the analysis of mice carrying the DNM2 K562E mutation which has been associated with dominant-intermediate CMT type B (CMTDIB). Contrary to our expectations, heterozygous DNM2 K562E mutant mice did not develop definitive signs of an axonal or demyelinating neuropathy. Rather, we found a primary myopathy-like phenotype in these mice. A likely interpretation of these results is that the lack of a neuropathy in this mouse model has allowed the unmasking of a primary myopathy due to the DNM2 K562E mutation which might be overshadowed by the neuropathy in humans. Consequently, we hypothesize that a primary myopathy may also contribute to the disease mechanism in some CMTDIB patients. We propose that these findings should be considered in the evaluation of patients, the determination of the underlying disease processes and the development of tailored potential treatment strategies.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Dinamina II/deficiência , Doenças Musculares/genética , Miopatias Congênitas Estruturais/genética , Animais , Axônios/metabolismo , Axônios/patologia , Doença de Charcot-Marie-Tooth/patologia , Dinamina II/genética , Heterozigoto , Humanos , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/patologia , Mutação/genética , Miopatias Congênitas Estruturais/patologia , Fenótipo
2.
Nature ; 513(7519): 551-4, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25079316

RESUMO

Mesenchymal stem cells occupy niches in stromal tissues where they provide sources of cells for specialized mesenchymal derivatives during growth and repair. The origins of mesenchymal stem cells have been the subject of considerable discussion, and current consensus holds that perivascular cells form mesenchymal stem cells in most tissues. The continuously growing mouse incisor tooth offers an excellent model to address the origin of mesenchymal stem cells. These stem cells dwell in a niche at the tooth apex where they produce a variety of differentiated derivatives. Cells constituting the tooth are mostly derived from two embryonic sources: neural crest ectomesenchyme and ectodermal epithelium. It has been thought for decades that the dental mesenchymal stem cells giving rise to pulp cells and odontoblasts derive from neural crest cells after their migration in the early head and formation of ectomesenchymal tissue. Here we show that a significant population of mesenchymal stem cells during development, self-renewal and repair of a tooth are derived from peripheral nerve-associated glia. Glial cells generate multipotent mesenchymal stem cells that produce pulp cells and odontoblasts. By combining a clonal colour-coding technique with tracing of peripheral glia, we provide new insights into the dynamics of tooth organogenesis and growth.


Assuntos
Diferenciação Celular , Linhagem da Célula , Incisivo/citologia , Células-Tronco Mesenquimais/citologia , Neuroglia/citologia , Animais , Rastreamento de Células , Células Clonais/citologia , Polpa Dentária/citologia , Feminino , Incisivo/embriologia , Masculino , Camundongos , Modelos Biológicos , Crista Neural/citologia , Odontoblastos/citologia , Regeneração , Células de Schwann/citologia
3.
PLoS Biol ; 13(9): e1002258, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26406915

RESUMO

The pathogenesis of peripheral neuropathies in adults is linked to maintenance mechanisms that are not well understood. Here, we elucidate a novel critical maintenance mechanism for Schwann cell (SC)-axon interaction. Using mouse genetics, ablation of the transcriptional regulators histone deacetylases 1 and 2 (HDAC1/2) in adult SCs severely affected paranodal and nodal integrity and led to demyelination/remyelination. Expression levels of the HDAC1/2 target gene myelin protein zero (P0) were reduced by half, accompanied by altered localization and stability of neurofascin (NFasc)155, NFasc186, and loss of Caspr and septate-like junctions. We identify P0 as a novel binding partner of NFasc155 and NFasc186, both in vivo and by in vitro adhesion assay. Furthermore, we demonstrate that HDAC1/2-dependent P0 expression is crucial for the maintenance of paranodal/nodal integrity and axonal function through interaction of P0 with neurofascins. In addition, we show that the latter mechanism is impaired by some P0 mutations that lead to late onset Charcot-Marie-Tooth disease.


Assuntos
Moléculas de Adesão Celular/metabolismo , Doença de Charcot-Marie-Tooth/genética , Proteína P0 da Mielina/genética , Bainha de Mielina/fisiologia , Fatores de Crescimento Neural/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Doença de Charcot-Marie-Tooth/enzimologia , Técnicas de Inativação de Genes , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Humanos , Camundongos
4.
Hum Mol Genet ; 22(21): 4417-29, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23813975

RESUMO

The ubiquitously expressed large GTPase Dynamin 2 (DNM2) plays a critical role in the regulation of intracellular membrane trafficking through its crucial function in membrane fission, particularly in endocytosis. Autosomal-dominant mutations in DNM2 cause tissue-specific human disorders. Different sets of DNM2 mutations are linked to dominant intermediate Charcot-Marie-Tooth neuropathy type B, a motor and sensory neuropathy affecting primarily peripheral nerves, or autosomal-dominant centronuclear myopathy (CNM) presenting with primary damage in skeletal muscles. To understand the underlying disease mechanisms, it is imperative to determine to which degree the primary affected cell types require DNM2. Thus, we used cell type-specific gene ablation to examine the consequences of DNM2 loss in skeletal muscle cells, the major relevant cell type involved in CNM. We found that DNM2 function in skeletal muscle is required for proper mouse development. Skeletal muscle-specific loss of DNM2 causes a reduction in muscle mass and in the numbers of muscle fibers, altered muscle fiber size distributions, irregular neuromuscular junctions (NMJs) and isolated degenerating intramuscular peripheral nerve fibers. Intriguingly, a lack of muscle-expressed DNM2 triggers an increase of lipid droplets (LDs) and mitochondrial defects. We conclude that loss of DNM2 function in skeletal muscles initiates a chain of harmful parallel and serial events, involving dysregulation of LDs and mitochondrial defects within altered muscle fibers, defective NMJs and peripheral nerve degeneration. These findings provide the essential basis for further studies on DNM2 function and malfunction in skeletal muscles in health and disease, potentially including metabolic diseases such as diabetes.


Assuntos
Doença de Charcot-Marie-Tooth/fisiopatologia , Dinamina II/deficiência , Dinamina II/fisiologia , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Músculo Esquelético/fisiologia , Miopatias Congênitas Estruturais/fisiopatologia , Junção Neuromuscular/fisiologia , Nervos Periféricos/fisiologia , Animais , Doença de Charcot-Marie-Tooth/genética , Dinamina II/genética , Dinamina II/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Mutação , Miopatias Congênitas Estruturais/genética , Junção Neuromuscular/metabolismo , Especificidade de Órgãos , Nervos Periféricos/metabolismo
5.
EMBO Rep ; 14(6): 545-52, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23628762

RESUMO

Mitochondria and peroxisomes can be fragmented by the process of fission. The fission machineries of both organelles share a set of proteins. GDAP1 is a tail-anchored protein of mitochondria and induces mitochondrial fragmentation. Mutations in GDAP1 lead to Charcot-Marie-Tooth disease (CMT), an inherited peripheral neuropathy, and affect mitochondrial dynamics. Here, we show that GDAP1 is also targeted to peroxisomes mediated by the import receptor Pex19. Knockdown of GDAP1 leads to peroxisomal elongation that can be rescued by re-expressing GDAP1 and by missense mutated forms found in CMT patients. GDAP1-induced peroxisomal fission is dependent on the integrity of its hydrophobic domain 1, and on Drp1 and Mff, as is mitochondrial fission. Thus, GDAP1 regulates mitochondrial and peroxisomal fission by a similar mechanism. However, our results reveal also a more critical role of the amino-terminal GDAP1 domains, carrying most CMT-causing mutations, in the regulation of mitochondrial compared to peroxisomal fission.


Assuntos
Dinâmica Mitocondrial , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Peroxissomos/fisiologia , Animais , Células COS , Forma Celular , Doença de Charcot-Marie-Tooth/genética , Chlorocebus aethiops , Dinaminas , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Hipocampo/patologia , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Cultura Primária de Células , Estrutura Terciária de Proteína , Transporte Proteico
6.
Brain ; 137(Pt 3): 668-82, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24480485

RESUMO

The ganglioside-induced differentiation-associated protein 1 (GDAP1) is a mitochondrial fission factor and mutations in GDAP1 cause Charcot-Marie-Tooth disease. We found that Gdap1 knockout mice (Gdap1(-/-)), mimicking genetic alterations of patients suffering from severe forms of Charcot-Marie-Tooth disease, develop an age-related, hypomyelinating peripheral neuropathy. Ablation of Gdap1 expression in Schwann cells recapitulates this phenotype. Additionally, intra-axonal mitochondria of peripheral neurons are larger in Gdap1(-/-) mice and mitochondrial transport is impaired in cultured sensory neurons of Gdap1(-/-) mice compared with controls. These changes in mitochondrial morphology and dynamics also influence mitochondrial biogenesis. We demonstrate that mitochondrial DNA biogenesis and content is increased in the peripheral nervous system but not in the central nervous system of Gdap1(-/-) mice compared with control littermates. In search for a molecular mechanism we turned to the paralogue of GDAP1, GDAP1L1, which is mainly expressed in the unaffected central nervous system. GDAP1L1 responds to elevated levels of oxidized glutathione by translocating from the cytosol to mitochondria, where it inserts into the mitochondrial outer membrane. This translocation is necessary to substitute for loss of GDAP1 expression. Accordingly, more GDAP1L1 was associated with mitochondria in the spinal cord of aged Gdap1(-/-) mice compared with controls. Our findings demonstrate that Charcot-Marie-Tooth disease caused by mutations in GDAP1 leads to mild, persistent oxidative stress in the peripheral nervous system, which can be compensated by GDAP1L1 in the unaffected central nervous system. We conclude that members of the GDAP1 family are responsive and protective against stress associated with increased levels of oxidized glutathione.


Assuntos
Axônios/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Animais , Células Cultivadas , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , DNA Mitocondrial/genética , Modelos Animais de Doenças , Glutationa/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Oxirredução , Estresse Oxidativo , Fenótipo
7.
Brain ; 135(Pt 5): 1395-411, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22451505

RESUMO

Mutations in dynamin 2 (DNM2) lead to dominant intermediate Charcot-Marie-Tooth neuropathy type B, while a different set of DNM2 mutations cause autosomal dominant centronuclear myopathy. In this study, we aimed to elucidate the disease mechanisms in dominant intermediate Charcot-Marie-Tooth neuropathy type B and to find explanations for the tissue-specific defects that are associated with different DNM2 mutations in dominant intermediate Charcot-Marie-Tooth neuropathy type B versus autosomal dominant centronuclear myopathy. We used tissue derived from Dnm2-deficient mice to establish an appropriate peripheral nerve model and found that dominant intermediate Charcot-Marie-Tooth neuropathy type B-associated dynamin 2 mutants, but not autosomal dominant centronuclear myopathy mutants, impaired myelination. In contrast to autosomal dominant centronuclear myopathy mutants, Schwann cells and neurons from the peripheral nervous system expressing dominant intermediate Charcot-Marie-Tooth neuropathy mutants showed defects in clathrin-mediated endocytosis. We demonstrate that, as a consequence, protein surface levels are altered in Schwann cells. Furthermore, we discovered that myelination is strictly dependent on Dnm2 and clathrin-mediated endocytosis function. Thus, we propose that altered endocytosis is a major contributing factor to the disease mechanisms in dominant intermediate Charcot-Marie-Tooth neuropathy type B.


Assuntos
Clatrina/farmacologia , Dinamina II/genética , Endocitose/fisiologia , Regulação da Expressão Gênica/genética , Mutação/genética , Neurônios/fisiologia , Complexo 2 de Proteínas Adaptadoras/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Meios de Cultura Livres de Soro/farmacologia , Embrião de Mamíferos , Endocitose/efeitos dos fármacos , Citometria de Fluxo , Gânglios Espinais/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Humanos , Integrina beta1/metabolismo , Camundongos , Camundongos Transgênicos , Proteína Básica da Mielina/metabolismo , Proteínas de Neurofilamentos/metabolismo , Neurônios/efeitos dos fármacos , Transporte Proteico/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Receptor ErbB-2/metabolismo , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Fatores de Tempo , Transfecção , Transferrina/metabolismo
8.
Brain ; 135(Pt 12): 3567-83, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23171661

RESUMO

Studying the function and malfunction of genes and proteins associated with inherited forms of peripheral neuropathies has provided multiple clues to our understanding of myelinated nerves in health and disease. Here, we have generated a mouse model for the peripheral neuropathy Charcot-Marie-Tooth disease type 4H by constitutively disrupting the mouse orthologue of the suspected culprit gene FGD4 that encodes the small RhoGTPase Cdc42-guanine nucleotide exchange factor Frabin. Lack of Frabin/Fgd4 causes dysmyelination in mice in early peripheral nerve development, followed by profound myelin abnormalities and demyelination at later stages. At the age of 60 weeks, this was accompanied by electrophysiological deficits. By crossing mice carrying alleles of Frabin/Fgd4 flanked by loxP sequences with animals expressing Cre recombinase in a cell type-specific manner, we show that Schwann cell-autonomous Frabin/Fgd4 function is essential for proper myelination without detectable primary contributions from neurons. Deletion of Frabin/Fgd4 in Schwann cells of fully myelinated nerve fibres revealed that this protein is not only required for correct nerve development but also for accurate myelin maintenance. Moreover, we established that correct activation of Cdc42 is dependent on Frabin/Fgd4 function in healthy peripheral nerves. Genetic disruption of Cdc42 in Schwann cells of adult myelinated nerves resulted in myelin alterations similar to those observed in Frabin/Fgd4-deficient mice, indicating that Cdc42 and the Frabin/Fgd4-Cdc42 axis are critical for myelin homeostasis. In line with known regulatory roles of Cdc42, we found that Frabin/Fgd4 regulates Schwann cell endocytosis, a process that is increasingly recognized as a relevant mechanism in peripheral nerve pathophysiology. Taken together, our results indicate that regulation of Cdc42 by Frabin/Fgd4 in Schwann cells is critical for the structure and function of the peripheral nervous system. In particular, this regulatory link is continuously required in adult fully myelinated nerve fibres. Thus, mechanisms regulated by Frabin/Fgd4-Cdc42 are promising targets that can help to identify additional regulators of myelin development and homeostasis, which may crucially contribute also to malfunctions in different types of peripheral neuropathies.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Proteínas dos Microfilamentos/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Células de Schwann/metabolismo , Fatores Etários , Animais , Células Cultivadas , Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , Estimulação Elétrica , Endocitose/efeitos dos fármacos , Endocitose/genética , Potencial Evocado Motor/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Microscopia Eletrônica de Transmissão , Mutação/genética , Proteína Proteolipídica de Mielina/genética , Bainha de Mielina/genética , RNA Interferente Pequeno/farmacologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/ultraestrutura , Nervo Isquiático/citologia , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transferrina/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
9.
Glia ; 60(10): 1518-28, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22729949

RESUMO

Missense mutations affecting the LITAF gene (also known as SIMPLE) lead to the dominantly inherited peripheral neuropathy Charcot-Marie-Tooth disease type 1C (CMT1C). In this study, we sought to determine the requirement of Litaf function in peripheral nerves, the only known affected tissue in CMT1C. We reasoned that this knowledge is a prerequisite for a thorough understanding of the underlying disease mechanism with regard to potential contributions by Litaf loss of function. In addition, we anticipated to obtain valuable information about the basic function of the Litaf protein in peripheral nerves. To address these issues, we generated mice without Litaf expression using gene disruption in embryonic stem cells and analyzed Litaf-deficient peripheral nerves during development, in maintenance, and after injury. Our results show that Litaf function is not absolutely required for peripheral nerve development and maintenance. In injured nerves, however, we found that lack of Litaf led to increased numbers of macrophages during Wallerian degeneration, accelerated myelin destruction, and the emergence of more axonal sprouts. Consistent with these data, the migration of Litaf-deficient macrophages was increased upon chemokine stimulation. We conclude that loss of Litaf function is unlikely to be a major contributor to CMT1C, but modulating effects of macrophages need to be considered in the etiology of the disease.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Nucleares/metabolismo , Nervos Periféricos/crescimento & desenvolvimento , Nervos Periféricos/metabolismo , Fatores de Transcrição/metabolismo , Degeneração Walleriana/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/genética , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Mutação/genética , Bainha de Mielina/metabolismo , Fibras Nervosas/patologia , Fibras Nervosas/ultraestrutura , Proteínas Nucleares/genética , Nervos Periféricos/ultraestrutura , Neuropatia Ciática/complicações , Neuropatia Ciática/patologia , Fatores de Transcrição/genética , Degeneração Walleriana/etiologia , Degeneração Walleriana/patologia
10.
Proc Natl Acad Sci U S A ; 106(41): 17528-33, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19805030

RESUMO

Charcot-Marie-Tooth disease type 4C (CMT4C) is an early-onset, autosomal recessive form of demyelinating neuropathy. The clinical manifestations include progressive scoliosis, delayed age of walking, muscular atrophy, distal weakness, and reduced nerve conduction velocity. The gene mutated in CMT4C disease, SH3TC2/KIAA1985, was recently identified; however, the function of the protein it encodes remains unknown. We have generated knockout mice where the first exon of the Sh3tc2 gene is replaced with an enhanced GFP cassette. The Sh3tc2(DeltaEx1/DeltaEx1) knockout animals develop progressive peripheral neuropathy manifested by decreased motor and sensory nerve conduction velocity and hypomyelination. We show that Sh3tc2 is specifically expressed in Schwann cells and localizes to the plasma membrane and to the perinuclear endocytic recycling compartment, concordant with its possible function in myelination and/or in regions of axoglial interactions. Concomitantly, transcriptional profiling performed on the endoneurial compartment of peripheral nerves isolated from control and Sh3tc2(DeltaEx1/DeltaEx1) animals uncovered changes in transcripts encoding genes involved in myelination and cell adhesion. Finally, detailed analyses of the structures composed of compact and noncompact myelin in the peripheral nerve of Sh3tc2(DeltaEx1/DeltaEx1) animals revealed abnormal organization of the node of Ranvier, a phenotype that we confirmed in CMT4C patient nerve biopsies. The generated Sh3tc2 knockout mice thus present a reliable model of CMT4C neuropathy that was instrumental in establishing a role for Sh3tc2 in myelination and in the integrity of the node of Ranvier, a morphological phenotype that can be used as an additional CMT4C diagnostic marker.


Assuntos
Proteínas/genética , Animais , Biópsia , Membrana Celular/patologia , Doença de Charcot-Marie-Tooth/epidemiologia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Modelos Animais de Doenças , Éxons , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Mutação , Bainha de Mielina/patologia , Prevalência , Regiões Promotoras Genéticas , Células de Schwann/patologia , Nervo Sural/patologia , Domínios de Homologia de src/genética
11.
J Cell Mol Med ; 15(2): 307-15, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19912440

RESUMO

Charcot-Marie-Tooth disease type 4B is caused by mutations in the genes encoding either the lipid phosphatase myotubularin-related protein-2 (MTMR2) or its regulatory binding partner MTMR13/SBF2. Mtmr2 dephosphorylates PI-3-P and PI-3,5-P2 to form phosphatidylinositol and PI-5-P, respectively, while Mtmr13/Sbf2 is an enzymatically inactive member of the myotubularin protein family. We have found altered levels of the critical signalling protein AKT in mouse mutants for Mtmr2 and Mtmr13/Sbf2. Thus, we analysed the influence of Mtmr2 and Mtmr13/Sbf2 on signalling processes. We found that overexpression of Mtmr2 prevents the degradation of the epidermal growth factor receptor (EGFR) and leads to sustained Akt activation whereas Erk activation is not affected. Mtmr13/Sbf2 counteracts the blockage of EGFR degradation without affecting prolonged Akt activation. Our data indicate that Mtmr2 and Mtmr13/Sbf2 play critical roles in the sorting and modulation of cellular signalling which are likely to be disturbed in CMT4B.


Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Doença de Charcot-Marie-Tooth/genética , Receptores ErbB/metabolismo , Camundongos , Camundongos Knockout , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Proto-Oncogênicas c-akt/biossíntese , Transdução de Sinais
12.
Neurogenetics ; 12(2): 145-53, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21365284

RESUMO

Charcot-Marie-Tooth disease (CMT) caused by mutations in the ganglioside-induced differentiation-associated protein 1 (GDAP1) gene is characterized by a spectrum of phenotypes. Recurrent nonsense mutations (Q163X and S194X) showing regional distribution segregate with an early onset, severe course of recessive CMT disease with early loss of ambulancy. Missense mutations in GDAP1 have been reported in sporadic CMT cases with variable course of disease, among them the recurrent L239F missense GDAP1 mutation occurring in the European population. Finally, some GDAP1 mutations are associated with a mild form of CMT inherited as an autosomal dominant trait. In this study, we characterize the CMT phenotype in one Polish family with recessive trait of inheritance at the clinical, electrophysiological, morphological, cellular, and genetic level associated with a new Gly327Asp mutation in the GDAP1 gene. In spite of the nature of Gly327Asp mutation (missense), the CMT phenotype associated with this variant may be characterized as an early onset, severe axonal neuropathy, with severe skeletal deformities. The mutation lies within the transmembrane domain of GDAP1 and interferes with the mitochondrial targeting of the protein, similar to the loss of the domain in the previously reported Q163X and S194X mutations. We conclude that the loss of mitochondrial targeting is associated with a severe course of disease. Our study shows that clinical outcome of CMT disease caused by mutations in the GDAP1 gene cannot be predicted solely on the basis of genetic results (missense/nonsense mutations).


Assuntos
Doença de Charcot-Marie-Tooth/genética , Membranas Mitocondriais/metabolismo , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Adulto , Animais , Células COS , Doença de Charcot-Marie-Tooth/metabolismo , Chlorocebus aethiops , Aberrações Cromossômicas , Feminino , Genes Recessivos , Células HeLa , Humanos , Masculino , Mutação de Sentido Incorreto/fisiologia , Linhagem , Transporte Proteico/genética , Adulto Jovem
13.
Nat Med ; 9(12): 1533-7, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14608378

RESUMO

Charcot-Marie-Tooth disease (CMT) is the most common inherited neuropathy. The predominant subtype, CMT-1A, accounts for more than 50% of all cases and is associated with an interstitial chromosomal duplication of 17p12 (refs. 2,3). We have generated a model of CMT-1A by introducing extra copies of the responsible disease gene, Pmp22 (encoding the peripheral myelin protein of 22 kDa), into transgenic rats. Here, we used this model to test whether progesterone, a regulator of the myelin genes Pmp22 and myelin protein zero (Mpz) in cultured Schwann cells, can modulate the progressive neuropathy caused by moderate overexpression of Pmp22. Male transgenic rats (n = 84) were randomly assigned into three treatment groups: progesterone, progesterone antagonist (onapristone) and placebo control. Daily administration of progesterone elevated the steady-state levels of Pmp22 and Mpz mRNA in the sciatic nerve, resulting in enhanced Schwann cell pathology and a more progressive clinical neuropathy. In contrast, administration of the selective progesterone receptor antagonist reduced overexpression of Pmp22 and improved the CMT phenotype, without obvious side effects, in wild-type or transgenic rats. Taken together, these data provide proof of principle that the progesterone receptor of myelin-forming Schwann cells is a promising pharmacological target for therapy of CMT-1A.


Assuntos
Doença de Charcot-Marie-Tooth/tratamento farmacológico , Antagonistas de Hormônios/uso terapêutico , Animais , Animais Geneticamente Modificados , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Modelos Animais de Doenças , Gonanos/uso terapêutico , Humanos , Proteína P0 da Mielina/genética , Proteína P0 da Mielina/metabolismo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Progesterona/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores de Progesterona/antagonistas & inibidores
14.
Brain ; 133(Pt 8): 2462-74, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20826437

RESUMO

Patients with Charcot-Marie-Tooth neuropathy and gene targeting in mice revealed an essential role for the SH3TC2 gene in peripheral nerve myelination. SH3TC2 expression is restricted to Schwann cells in the peripheral nervous system, and the gene product, SH3TC2, localizes to the perinuclear recycling compartment. Here, we show that SH3TC2 interacts with the small guanosine triphosphatase Rab11, which is known to regulate the recycling of internalized membranes and receptors back to the cell surface. Results of protein binding studies and transferrin receptor trafficking are in line with a role of SH3TC2 as a Rab11 effector molecule. Consistent with a function of Rab11 in Schwann cell myelination, SH3TC2 mutations that cause neuropathy disrupt the SH3TC2/Rab11 interaction, and forced expression of dominant negative Rab11 strongly impairs myelin formation in vitro. Our data indicate that the SH3TC2/Rab11 interaction is relevant for peripheral nerve pathophysiology and place endosomal recycling on the list of cellular mechanisms involved in Schwann cell myelination.


Assuntos
Proteínas de Transporte/metabolismo , Endossomos/metabolismo , Bainha de Mielina/metabolismo , Nervos Periféricos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Células COS , Proteínas de Transporte/genética , Linhagem Celular , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Chlorocebus aethiops , Gânglios Espinais/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Mutação , Ratos , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo , Proteínas rab de Ligação ao GTP/genética
15.
J Cell Biol ; 170(7): 1067-78, 2005 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-16172208

RESUMO

Mutations in GDAP1 lead to severe forms of the peripheral motor and sensory neuropathy, Charcot-Marie-Tooth disease (CMT), which is characterized by heterogeneous phenotypes, including pronounced axonal damage and demyelination. We show that neurons and Schwann cells express ganglioside-induced differentiation associated protein 1 (GDAP1), which suggest that both cell types may contribute to the mixed features of the disease. GDAP1 is located in the mitochondrial outer membrane and regulates the mitochondrial network. Overexpression of GDAP1 induces fragmentation of mitochondria without inducing apoptosis, affecting overall mitochondrial activity, or interfering with mitochondrial fusion. The mitochondrial fusion proteins, mitofusin 1 and 2 and Drp1(K38A), can counterbalance the GDAP1-dependent fission. GDAP1-specific knockdown by RNA interference results in a tubular mitochondrial morphology. GDAP1 truncations that are found in patients who have CMT are not targeted to mitochondria and have lost mitochondrial fragmentation activity. The latter activity also is reduced strongly for disease-associated GDAP1 point mutations. Our data indicate that an exquisitely tight control of mitochondrial dynamics, regulated by GDAP1, is crucial for the proper function of myelinated peripheral nerves.


Assuntos
Doença de Charcot-Marie-Tooth/etiologia , Doença de Charcot-Marie-Tooth/metabolismo , Mitocôndrias/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Animais , Células Cultivadas , Doença de Charcot-Marie-Tooth/genética , Dinaminas , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/farmacologia , Regulação da Expressão Gênica , Humanos , Membranas Intracelulares/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/farmacologia , Mitocôndrias/química , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/farmacologia , Modelos Biológicos , Mutação , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Ratos , Células de Schwann/citologia , Células de Schwann/metabolismo
16.
Neurogenetics ; 10(4): 275-87, 2009 10.
Artigo em Inglês | MEDLINE | ID: mdl-19290556

RESUMO

Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous disorder. All mendelian patterns of inheritance have been described. We identified a homozygous p.A335V mutation in the MED25 gene in an extended Costa Rican family with autosomal recessively inherited Charcot-Marie-Tooth neuropathy linked to the CMT2B2 locus in chromosome 19q13.3. MED25, also known as ARC92 and ACID1, is a subunit of the human activator-recruited cofactor (ARC), a family of large transcriptional coactivator complexes related to the yeast Mediator. MED25 was identified by virtue of functional association with the activator domains of multiple cellular and viral transcriptional activators. Its exact physiological function in transcriptional regulation remains obscure. The CMT2B2-associated missense amino acid substitution p.A335V is located in a proline-rich region with high affinity for SH3 domains of the Abelson type. The mutation causes a decrease in binding specificity leading to the recognition of a broader range of SH3 domain proteins. Furthermore, Med25 is coordinately expressed with Pmp22 gene dosage and expression in transgenic mice and rats. These results suggest a potential role of this protein in the molecular etiology of CMT2B2 and suggest a potential, more general role of MED25 in gene dosage sensitive peripheral neuropathy pathogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Substituição de Aminoácidos , Proteínas de Ciclo Celular , Doença de Charcot-Marie-Tooth/genética , Complexo Mediador , Proteínas da Mielina , Proteínas Nucleares , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Doença de Charcot-Marie-Tooth/fisiopatologia , Costa Rica , Análise Mutacional de DNA , Modelos Animais de Doenças , Feminino , Dosagem de Genes , Genótipo , Humanos , Masculino , Complexo Mediador/química , Complexo Mediador/genética , Complexo Mediador/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Linhagem , Conformação Proteica , Ratos
17.
Neurobiol Dis ; 36(3): 509-20, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19782751

RESUMO

Mutations in the GDAP1 gene lead to recessively or dominantly inherited peripheral neuropathies (Charcot-Marie-Tooth disease; CMT). Here, we demonstrate that GDAP1 is a mitochondrial fission factor whose activity is dependent on the fission factors Drp1 and Fis1. Unlike other mitochondrial fission factors, GDAP1 overexpression or knockdown does not influence the susceptibility of cells to apoptotic stimuli. Recessively inherited CMT-associated forms of GDAP1 (rmGDAP1s) have reduced fission activity, whereas dominantly inherited forms (dmGDAP1s) interfere with mitochondrial fusion. Only the expression of dmGDAP1s increases the production of ROS, leads to uneven mitochondrial transmembrane potentials, and enhances the susceptibility to apoptotic stimuli. Taken together, our results indicate that wild-type GDAP1 promotes fission without increasing the risk of apoptosis. In CMT, recessive GDAP1 mutations are associated with reduced fission activity, while dominant mutations impair mitochondrial fusion and cause mitochondrial damage. Thus, different cellular mechanisms that disturb mitochondrial dynamics underlie the similar clinical manifestations caused by GDAP1 mutations, depending on the mode of inheritance.


Assuntos
Apoptose/genética , Apoptose/fisiologia , Mitocôndrias/genética , Mitocôndrias/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Animais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Sequências Repetidas Invertidas , Potencial da Membrana Mitocondrial/genética , Potencial da Membrana Mitocondrial/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação , RNA/genética , Espécies Reativas de Oxigênio/metabolismo , Gravação em Vídeo
18.
Glia ; 56(14): 1508-1517, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18803320

RESUMO

RhoGTPases are molecular switches that integrate extracellular signals to perform diverse cellular responses. This ability relies on the network of proteins regulating RhoGTPases activity and localization, and on the interaction of RhoGTPases with many different cellular effectors. Myelination is an ideal place for RhoGTPases regulation, as it is the result of fine orchestration of many stimuli from at least two cell types. Recent work has revealed that RhoGTPases are required for Schwann cells to sort, ensheath, and myelinate axons. Here, we will review these recent advances showing the critical roles for RhoGTPases in various aspects of Schwann development and myelination, including the recent discovery of their involvement in Charcot-Marie-Tooth disease. Comparison with potential roles of RhoGTPases in central nervous system myelination will be drawn.


Assuntos
Bainha de Mielina/enzimologia , Fibras Nervosas Mielinizadas/enzimologia , Sistema Nervoso Periférico/embriologia , Sistema Nervoso Periférico/enzimologia , Células de Schwann/enzimologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Axônios/enzimologia , Axônios/ultraestrutura , Diferenciação Celular/genética , Sistema Nervoso Central/citologia , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/enzimologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Bainha de Mielina/ultraestrutura , Fibras Nervosas Mielinizadas/ultraestrutura , Sistema Nervoso Periférico/citologia , Células de Schwann/citologia , Proteínas rho de Ligação ao GTP/genética
19.
Neuromolecular Med ; 8(1-2): 217-42, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16775378

RESUMO

We review the putative functions and malfunctions of proteins encoded by genes mutated in Charcot-Marie-Tooth disease (CMT; inherited motor and sensory neuropathies) in normal and affected peripheral nerves. Some proteins implicated in demyelinating CMT, peripheral myelin protein 22, protein zero (P0), and connexin32 (Cx32/GJB1) are crucial components of myelin. Periaxin is involved in connecting myelin to the surrounding basal lamina. Early growth response 2 (EGR2) and Sox10 are transcriptional regulators of myelin genes. Mutations in the small integral membrane protein of lysosome/late endosome, the myotubularin-related protein 2 (MTMR2), and MTMR13/set-binding factor 2 are involved in vesicle and membrane transport and the regulation of protein degradation. Pathomechanisms related to alterations of these processes are a widespread phenomenon in demyelinating neuropathies because mutations of myelin components may also affect protein biosynthesis, transport, and/or degradation. Related disease mechanisms are also involved in axonal neuropathies although there is considerably more functional heterogeneity. Some mutations, most notably in P0, GJB1, ganglioside-induced differentiation-associated protein 1 (GDAP1), neurofilament light chain (NF-L), and dynamin 2 (DNM2), can result in demyelinating or axonal neuropathies introducing additional complexity in the pathogenesis. Often, this relates to the intimate connection between Schwann cells and neurons/axons leading to axonal damage even if the mutation-caused defect is Schwann-cell-autonomous. This mechanism is likely for P0 and Cx32 mutations and provides the basis for the unifying hypothesis that also demyelinating neuropathies develop into functional axonopathies. In GDAP1 and DNM2 mutants, both Schwann cells and axons/neurons might be directly affected. NF-L mutants have a primary neuronal defect but also cause demyelination. The major challenge ahead lies in determining the individual contributions by neurons and Schwann cells to the pathology over time and to delineate the detailed molecular functions of the proteins associated with CMT in health and disease.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/fisiopatologia , Mutação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Conexinas/genética , Conexinas/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Doenças Desmielinizantes/patologia , Dinamina II/genética , Dinamina II/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Endocitose/fisiologia , GTP Fosfo-Hidrolases , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteína P0 da Mielina/genética , Proteína P0 da Mielina/metabolismo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transporte Proteico , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases não Receptoras , Proteínas/genética
20.
Sci Rep ; 6: 36930, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27841286

RESUMO

Mutations in the ganglioside-induced differentiation associated protein 1 (GDAP1) cause severe peripheral motor and sensory neuropathies called Charcot-Marie-Tooth disease. GDAP1 expression induces fission of mitochondria and peroxisomes by a currently elusive mechanism, while disease causing mutations in GDAP1 impede the protein's role in mitochondrial dynamics. In silico analysis reveals sequence similarities of GDAP1 to glutathione S-transferases (GSTs). However, a proof of GST activity and its possible impact on membrane dynamics are lacking to date. Using recombinant protein, we demonstrate for the first time theta-class-like GST activity for GDAP1, and it's activity being regulated by the C-terminal hydrophobic domain 1 (HD1) of GDAP1 in an autoinhibitory manner. Moreover, we show that the HD1 amphipathic pattern is required to induce membrane dynamics by GDAP1. As both, fission and GST activities of GDAP1, are critically dependent on HD1, we propose that GDAP1 undergoes a molecular switch, turning from a pro-fission active to an auto-inhibited inactive conformation.


Assuntos
Membrana Celular/metabolismo , Glutationa/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Animais , Glutationa Transferase/metabolismo , Células HEK293 , Homeostase , Humanos , Lipossomos/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Domínios Proteicos , Multimerização Proteica , Células Sf9
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA