RESUMO
Spider dragline silk has unique characteristics of strength and extensibility, including supercontraction. When we use it as a biomaterial or material for textiles, it is important to suppress the effect of water on the fiber by as much as possible in order to maintain dimensional stability. In order to produce spider silk with a highly hydrophobic character, based on the sequence of ADF-3 silk, we produced recombinant silk (RSSP(VLI)) where all QQ sequences were replaced by VL, while single Q was replaced by I. The artificial RSSP(VLI) fiber was prepared using formic acid as the spinning solvent and methanol as the coagulant solvent. The dimensional stability and water absorption experiments of the fiber were performed for eight kinds of silk fiber. RSSP(VLI) fiber showed high dimensional stability, which is suitable for textiles. A remarkable decrease in the motion of the fiber in water was made evident by 13C solid-state NMR. This study using 13C solid-state NMR is the first trial to put spider silk to practical use and provide information regarding the molecular design of new recombinant spider silk materials with high dimensional stability in water, allowing recombinant spider silk proteins to be used in next-generation biomaterials and materials for textiles.
Assuntos
Seda , Água , Seda/química , Água/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas Recombinantes/química , Materiais Biocompatíveis/química , Proteínas de ArtrópodesRESUMO
BACKGROUND: Bombyx mori silk fibroin (SF) is biocompatible and degradable and has been proposed as a new material for small-diameter vascular grafts. We compared biological reactions to vascular grafts made of SF and polyethylene terephthalate (PET) to reveal the potential ability of SF as a base and/or coating materials for vascular prostheses. METHODS: SF was combined with PET or gelatin (G) to make 4 types of vascular grafts (SF/SF, SF/G, PET/SF, and PET/G, shown as "base/coating material," respectively), which are 1.5 mm in diameter and 10 mm in length. The 4 types of grafts (n = 6, respectively) were implanted into rat abdominal aortae and explanted 2 weeks or 3 months later. RESULTS: Two weeks after implantation, there are no significant differences among the 4 kinds of grafts in biological reactions evaluated by histopathologic examination. However, a remarkable difference was observed after 3 months. The area of tissue infiltration into the inside of the graft wall was approximately 2.5 times larger in SF/SF than that in PET/G. The endothelialization was achieved almost 100% in SF/SF, despite only 50% was achieved in PET/G. CONCLUSIONS: Results show that SF has a higher potential as a base of vascular grafts than the commercially available PET/G graft. The larger tissue infiltration area in PET/SF compared with that in PET/G also indicates the potential of SF as a coating material. In the present study, SF delivered promising results as base and coating materials for small-diameter vascular prostheses.
Assuntos
Aorta Abdominal/fisiologia , Fibroínas , Polietilenotereftalatos , Reepitelização/fisiologia , Animais , Materiais Biocompatíveis , Bioprótese , Prótese Vascular , Bombyx , Feminino , Teste de Materiais , Modelos Animais , Ratos , Ratos Sprague-Dawley , Seda , Enxerto VascularRESUMO
BACKGROUND: There has been no study in which the correlation between clinical results and dosimetry based on a 3D treatment planning system in patients with 198Au grains for head and neck cancer was evaluated. METHODS: Thirty-two patients who were treated with 198Au grains for head and neck cancer were reviewed. Twenty-five patients were treated with brachytherapy alone and seven patients were treated with a combination of brachytherapy and neoadjuvant external beam radiation therapy. RESULTS: With a median observation period of 60 months, the 5-year local control rate was 82.9%. V85Gy of CTV in patients with local recurrence tended to be lower than that in patients without local recurrence (p = 0.07). The maximum dose of the keratinized gingiva in patients in whom bone exposure occurred was significantly higher than that in patients in whom bone exposure did not occur (p = 0.001). CONCLUSIONS: Dose distribution with 198Au grains can predict local control and late adverse events.
RESUMO
The recombinant proteins [EE(A)12EETGRGDSPAAS]n (n = 5,10) were prepared as a potential scaffold material for bone repair. The construct was based on Antheraea perni silk fibroin to which cells adhere well and combined poly(alanine), the integrin binding site TGRGDSPA, and a pair of glutamic acids (E2) at both the N- and C-terminal sites to render the construct water-soluble and with the hope that it might enhance mineralization with hydroxyapatite. Initially, two peptides E2(A)nE2TGRGDSPAE2(A)nE2 (n = 6, 12) were prepared by solid state synthesis to examine the effect of size on conformation and on cell binding. The larger peptide bound osteoblasts more readily and had a higher helix content than the smaller one. Titration of the side chain COO(-) to COOH of the E2 and D units in the peptide was monitored by solution NMR. On the basis of these results, we produced the related recombinant His tagged protein [EE(A)12EETGRGDSPAAS]n (n = 5,10) by expression in Escherichia coli . The solution NMR spectra of the recombinant protein indicated that the poly(alanine) regions are helical, and one E2 unit is helical and the other is a random coil. A molecular dynamics simulation of the protein supports these conclusions from NMR. We showed that the recombinant protein, especially, [EE(A)12EETGRGDSPAAS]10 has some of the properties required for bone tissue engineering scaffold including insolubility, and evidence of enhanced cell binding through focal adhesions, and enhanced osteogenic expression of osteoblast-like cells bound to it, and has potential for use as a bone repair material.
Assuntos
Substitutos Ósseos/química , Fibroínas/química , Fibroínas/metabolismo , Glutamatos/análise , Integrinas/metabolismo , Peptídeos/análise , Animais , Sítios de Ligação , Adesão Celular , Linhagem Celular , Fibroínas/síntese química , Concentração de Íons de Hidrogênio , Camundongos , Simulação de Dinâmica Molecular , Mariposas , Ressonância Magnética Nuclear Biomolecular , Osteoclastos/química , Osteoclastos/citologia , Conformação Proteica , Proteínas Recombinantes/síntese química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidade , Propriedades de Superfície , Água/químicaRESUMO
Small-diameter (less than 6 mm in diameter) vascular grafts are highly desirable due to the large demand for surgical revascularization; however, there are no available artificial grafts. Vascular grafts of 1.5 mm diameter prepared by our group with silk fibroin fiber have been proved to be excellent grafts with remarkably high patency and remodeling, based on rat implantation experiment (Enomoto et al., 2010). In this study, a silk fibroin vascular graft with 3 mm diameter which can be used for the coronary arteries or lower extremity arteries is prepared with a double-raschel knitted Bombyx mori silk fiber tube coated with B. mori silk fibroin sponge. Here the silk sponge is prepared from an aqueous solution of the silk fibroin and poly(ethylene) glycol diglycidyl ether as porogen. Sufficient strength, proper elasticity, and protection from loose ends in the implantation process are obtained for the silk fibroin graft; low water permeability and relatively large compliance are also attained. These excellent physical properties make silk fibroin grafts suitable to be implanted in a canine model.