Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Biomacromolecules ; 25(1): 444-454, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38135668

RESUMO

Polyhydroxyalkanoates (PHAs), aliphatic polyesters synthesized by microorganisms, have gained considerable attention as biodegradable plastics. Recently, α-carbon-methylated PHAs have been shown to exhibit several interesting properties that differ from those of conventional PHAs, such as their crystallization behavior and material properties. This study investigated α-carbon methylated (S)- and (R)-3-hydroxy-2-methylpropionate (3H2MP) as new repeating units. 3H2MP units were homopolymerized or copolymerized with (R)-3-hydroxybutyrate (3HB) by manipulating the culture conditions of recombinant Escherichia coli LSBJ. Consequently, PHAs with 3H2MP units ranging from 5 to 100 mol % were synthesized by external addition of (R)- and (S)-enantiomers or the racemic form of 3H2MPNa. The (S)-3H2MP precursor supplemented into the culture medium was almost directly polymerized into PHA while maintaining its chirality. Therefore, a highly isotactic P(3H2MP) (R:S = 1:99) was synthesized, which displayed a melting temperature of 114-119 °C and a relatively high enthalpy of fusion (68 J/g). In contrast, in cultures supplemented with (R)-3H2MP, the precursor was racemized and polymerized into PHA, resulting in the synthesis of the amorphous polymer atactic P(3H2MP) (R:S = 40:60). However, racemization was not observed at a low concentration of the (R)-3H2MP precursor, thereby synthesizing P(3HB-co-8 mol % 3H2MP) with 100% (R)-3H2MP units. The thermogravimetric analysis revealed that the thermal degradation temperatures at 5% weight loss of P(3H2MP)s occurred at approximately 313 °C, independent of tacticity, which is substantially higher than that of P(3HB) (257 °C). This study demonstrates a new concept for controlling the physical properties of biosynthesized PHA by manipulating the polymers' tacticity using 3H2MP units.


Assuntos
Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/química , Poliésteres/metabolismo , Hidroxibutiratos , Temperatura , Escherichia coli/genética , Escherichia coli/metabolismo , Carbono/metabolismo
2.
Microb Cell Fact ; 22(1): 131, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468909

RESUMO

Escherichia coli is a useful platform for producing valuable materials through the implementation of synthetic gene(s) derived from other organisms. The production of lactate (LA)-based polyester poly[LA-co-3-hydroxybutyrate (3HB)] was carried out in E. coli using a set of five other species-derived genes: Pseudomonas sp. 61-3-derived phaC1STQK (for polymerization), Cupriavidus necator-derived phaAB (for 3HB-CoA generation), and Megasphaera elsdenii-derived pct (for LA-CoA generation) cloned into pTV118NpctphaC1ps(ST/QK)AB. Here, we aimed to optimize the expression level and timing of these genes to improve the production of P(LA-co-3HB) and to manipulate the LA fraction by replacing the promoters with various promoters in E. coli. Evaluation of the effects of 21 promoter replacement plasmids revealed that the phaC1STQK-AB operon is critical for the stationary phase for P(LA-co-3HB) production. Interestingly, the effects of the promoters depended on the composition of the medium. In glucose-supplemented LB medium, the dps promoter replacement plasmid resulted in the greatest effect, increasing the accumulation to 8.8 g/L and an LA fraction of 14.1 mol% of P(LA-co-3HB), compared to 2.7 g/L and 8.1 mol% with the original plasmid. In xylose-supplemented LB medium, the yliH promoter replacement plasmid resulted in the greatest effect, with production of 5.6 g/L and an LA fraction of 40.2 mol% compared to 3.6 g/L and 22.6 mol% with the original plasmid. These results suggest that the selection of an appropriate promoter for expression of the phaC1STQK-AB operon could improve the production and LA fraction of P(LA-co-3HB). Here, we propose that the selection of cell-growth phase-dependent promoters is a versatile biotechnological strategy for effective intracellular production of polymeric materials such as P(LA-co-3HB), in combination with the selection of sugar-based carbon sources.


Assuntos
Escherichia coli , Ácido Láctico , Escherichia coli/genética , Escherichia coli/metabolismo , Poliésteres/metabolismo , Hidroxibutiratos/metabolismo
3.
Biomacromolecules ; 19(7): 2889-2895, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29667817

RESUMO

Engineered d-lactyl-coenzyme A (LA-CoA)-polymerizing polyhydroxyalkanoate synthase (PhaC1PsSTQK) efficiently produces poly(lactate- co-3-hydroxybutyrate) [P(LA- co-3HB]) copolymer in recombinant Escherichia coli, while synthesizing tiny amounts of poly(lactate) (PLA)-like polymers in recombinant Corynebacterium glutamicum. To elucidate the mechanisms underlying the interesting phenomena, in vitro analysis of PhaC1PsSTQK was performed using homo- and copolymerization conditions of LA-CoA and 3-hydroxybutyryl-CoA. PhaC1PsSTQK polymerized LA-CoA as a sole substrate. However, the extension of PLA chains completely stalled at a molecular weight of ∼3000, presumably due to the low mobility of the generated polymer. The copolymerization of these substrates only proceeded with a low concentration of LA-CoA. In fact, the intracellular LA-CoA concentration in P(LA- co-3HB)-producing E. coli was below the detection limit, while that in C. glutamicum was as high as acetyl-CoA levels. Therefore, it was concluded that the mobility of polymerized products and LA-CoA concentration are dominant factors characterizing PLA and P(LA- co-3HB) biosynthetic systems.


Assuntos
Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Poliésteres/síntese química , Biocatálise , Poliésteres/metabolismo , Polimerização , Proteínas Recombinantes/metabolismo
4.
Biosci Biotechnol Biochem ; 80(4): 818-20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26757596

RESUMO

P[(R)-lactate-co-(R)-3-hydroxybutyrate] [P(LA-co-3HB)] was produced in engineered Escherichia coli using lignocellulose-derived hydrolysates from Miscanthus × giganteus (hybrid Miscanthus) and rice straw. Hybrid Miscanthus-derived hydrolysate exhibited no negative effect on polymer production, LA fraction, and molecular weight of the polymer, whereas rice straw-derived hydrolysate reduced LA fraction. These results revealed that P(LA-co-3HB) was successfully produced from hybrid Miscanthus-derived sugars.


Assuntos
Metabolismo dos Carboidratos , Hidroxibutiratos/metabolismo , Ácido Láctico/metabolismo , Poaceae/metabolismo , Poliésteres/metabolismo , Biomassa
5.
Appl Microbiol Biotechnol ; 99(22): 9349-60, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26362682

RESUMO

The choice of an appropriate microbial host cell and suitable production conditions is crucial for the downstream processing of pharmaceutical- and food-grade products. Although Escherichia coli serves as a highly valuable leading platform for the production of value-added products, like most Gram-negative bacteria, this bacterium contains a potent immunostimulatory lipopolysaccharide (LPS), referred to as an endotoxin. In contrast, Gram-positive bacteria, notably Bacillus, lactic acid bacteria (LAB), Corynebacterium, and yeasts have been extensively used as generally recognized as safe (GRAS) endotoxin-free platforms for the production of a variety of products. This review summarizes the currently available knowledge on the utilization of these representative Gram-positive bacteria for the production of eco- and bio-friendly products, particularly natural polyesters, polyhydroxyalkanoates, bacteriocins, and membrane proteins. The successful case studies presented here serve to inspire the use of these microorganisms as a main-player or by-player depending on their individual properties for the industrial production of these desirable targets.


Assuntos
Endotoxinas/análise , Microbiologia de Alimentos , Bactérias Gram-Positivas/metabolismo , Microbiologia Industrial/métodos , Leveduras/metabolismo , Bacillus/metabolismo , Bacteriocinas/biossíntese , Biofarmácia , Corynebacterium/metabolismo , DNA Recombinante , Escherichia coli/metabolismo , Bactérias Gram-Positivas/genética , Lactococcus/metabolismo , Proteínas de Membrana/biossíntese , Poliésteres/metabolismo , Poli-Hidroxialcanoatos/biossíntese
6.
Appl Microbiol Biotechnol ; 99(22): 9555-63, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26109003

RESUMO

Polyhydroxyalkanoate depolymerase derived from Variovorax sp. C34 (PhaZVs) was identified as the first enzyme that is capable of degrading isotactic P[67 mol% (R)-lactate(LA)-co-(R)-3-hydroxybutyrate(3HB)] [P(D-LA-co-D-3HB)]. This study aimed at analyzing the monomer sequence specificity of PhaZVs for hydrolyzing P(LA-co-3HB) in comparison with a P(3HB) depolymerase from Alcaligenes faecalis T1 (PhaZAf) that did not degrade the same copolymer. Degradation of P(LA-co-3HB) by action of PhaZVs generated dimers, 3HB-3HB, 3HB-LA, LA-3HB, and LA-LA, and the monomers, suggesting that PhaZVs cleaved the linkages between LA and 3HB units and between LA units. To provide a direct evidence for the hydrolysis of these sequences, the synthetic methyl trimers, 3HB-3HB-3HB, LA-LA-3HB, LA-3HB-LA, and 3HB-LA-LA, were treated with the PhaZs. Unexpectedly, not only PhaZVs but also PhaZAf hydrolyzed all of these substrates, namely PhaZAf also cleaved LA-LA linkage. Considering the fact that both PhaZs did not degrade P[(R)-LA] (PDLA) homopolymer, the cleavage capability of LA-LA linkage by PhaZs was supposed to depend on the length of the LA-clustering region in the polymer chain. To test this hypothesis, PDLA oligomers (6 to 40 mer) were subjected to the PhaZ assay, revealing that there was an inverse relationship between molecular weight of the substrates and their hydrolysis efficiency. Moreover, PhaZVs exhibited the degrading activity toward significantly longer PDLA oligomers compared to PhaZAf. Therefore, the cleaving capability of PhaZs used here toward the D-LA-based polymers containing the LA-clustering region was strongly associated with the substrate length, rather than the monomer sequence specificity of the enzyme.


Assuntos
Alcaligenes faecalis/enzimologia , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Comamonadaceae/enzimologia , Poliésteres/metabolismo , Alcaligenes faecalis/metabolismo , Biodegradação Ambiental , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/isolamento & purificação , Comamonadaceae/metabolismo , Hidrólise , Hidroxibutiratos/metabolismo , Ácido Láctico/metabolismo , Peso Molecular , Poliésteres/química , Polímeros/metabolismo , Especificidade por Substrato
7.
Biosci Biotechnol Biochem ; 79(6): 986-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25647430

RESUMO

Highly active mutant of NADPH-dependent acetoacetyl-CoA reductase (PhaB) was expressed in Nicotiana tabacum cv. Bright Yellow-2 cultured cells to produce poly(3-hydroxybutyrate) [P(3HB)]. The mutated PhaB increased P(3HB) content by three-fold over the control, indicating that the mutant was a versatile tool for P(3HB) production. Additionally, the PhaB-catalyzed reaction was suggested to be a rate-limiting step of P(3HB) biosynthesis in tobacco BY-2 cells.


Assuntos
Oxirredutases do Álcool/genética , Hidroxibutiratos/metabolismo , Nicotiana/citologia , Nicotiana/genética , Poliésteres/metabolismo , Engenharia de Proteínas , Oxirredutases do Álcool/metabolismo , Biocatálise , Linhagem Celular , Cinética , Plantas Geneticamente Modificadas , Transformação Genética
8.
Appl Microbiol Biotechnol ; 98(6): 2453-60, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24337250

RESUMO

Poly(lactate-co-3-hydroxybutyrate) (P(LA-co-3HB)) was previously produced from xylose in engineered Escherichia coli. The aim of this study was to increase the polymer productivity and LA fraction in P(LA-co-3HB) using two metabolic engineering approaches: (1) deletions of competing pathways to lactate production and (2) overexpression of a galactitol transporter (GatC), which contributes to the ATP-independent xylose uptake. Engineered E. coli mutants (ΔpflA, Δpta, ΔackA, ΔpoxB, Δdld, and a dual mutant; ΔpflA + Δdld) and their parent strain, BW25113, were grown on 20 g l(-1) xylose for P(LA-co-3HB) production. The single deletions of ΔpflA, Δpta, and Δdld increased the LA fraction (58-66 mol%) compared to BW25113 (56 mol%). In particular, the ΔpflA + Δdld strain produced P(LA-co-3HB) containing 73 mol% LA. Furthermore, GatC overexpression increased both polymer yields and LA fractions in ΔpflA, Δpta, and Δdld mutants, and BW25113. The ΔpflA + gatC strain achieved a productivity of 8.3 g l(-1), which was 72 % of the theoretical maximum yield. Thus, to eliminate limitation of the carbon source, higher concentration of xylose was fed. As a result, BW25113 harboring gatC grown on 40 g l(-1) xylose reached the highest P(LA-co-3HB) productivity of 14.4 g l(-1). On the other hand, the ΔpflA + Δdld strain grown on 30 g l(-1) xylose synthesized 6.4 g l(-1) P(LA-co-3HB) while maintaining the highest LA fraction (73 mol%). The results indicated the usefulness of GatC for enhanced production of P(LA-co-3HB) from xylose, and the gene deletions to upregulate the LA fraction in P(LA-co-3HB). The polymers obtained had weight-averaged molecular weights in the range of 34,000-114,000.


Assuntos
Escherichia coli/enzimologia , Escherichia coli/metabolismo , Galactitol/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Engenharia Metabólica , Poliésteres/metabolismo , Xilose/metabolismo , Escherichia coli/genética , Deleção de Genes , Expressão Gênica , Proteínas de Membrana Transportadoras/genética
9.
Int J Biol Macromol ; 266(Pt 1): 130990, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508553

RESUMO

This study investigated the effect of polymer blending of microbially produced poly[(R)-lactate-co-(R)-3-hydroxybutyrate] copolymers (LAHB) with poly(lactate) (PLA) on their mechanical, thermal, and biodegradable properties. Blending of high lactate (LA) content and high molecular weight LAHB significantly improved the tensile elongation of PLA up to more than 250 % at optimal LAHB composition of 20-30 wt%. Temperature-modulated differential scanning calorimetry and dynamic mechanical analysis revealed that PLA and LAHB were immiscible but interacted with each other, as indicated by the mutual plasticization effect. Detailed morphological characterization using scanning probe microscopy, small-angle X-ray scattering, and solid-state NMR confirmed that PLA and LAHB formed a two-phase structure with a characteristic length scale as small as 20 nm. Because of mixing in this order, the polymer blends were optically transparent. The biological oxygen demand test of the polymer blends in seawater indicated an enhancement of PLA biodegradation during biodegradation of the polymer blends.


Assuntos
Poliésteres , Poliésteres/química , Poliésteres/metabolismo , Polímeros/química , Polímeros/metabolismo , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Temperatura , Peso Molecular , Biodegradação Ambiental
10.
Int J Biol Macromol ; 274(Pt 2): 133055, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866271

RESUMO

Previously, we biosynthesized an evolved version of a bio-based polylactide (PLA) on microbial platforms using our engineered lactate-polymerizing enzyme (LPE). This lactate (LA)-based copolyester, LAHB, has advantages over PLA, including improved flexibility and biodegradability, and its properties can be regulated through the LA fraction. To expand the LA-incorporation capacity and improve polymer properties, in the state of in vivo LAHB production, propionyl-CoA transferases (PCTs) that exhibited enhanced production of LA-CoA than the conventional PCTs were selected. Here, the present study has demonstrated that the LA fraction of LAHB could be altered using various PCTs. Enhanced PCT performance was achieved by balancing polymer production and cell growth. Both events are governed by the use of acetyl-CoA, a commonly shared key metabolite. This could be attributed to the different reactivities of individual PCTs towards acetyl-CoA, which serves both as a CoA donor and a leading compound in the TCA cycle. Interestingly, we found complete sequence randomness in the LAHB copolymers, independent of the LA fraction. The mechanism of LA fraction-independent sequence randomness is discussed. This new PCT-based strategy synergistically combines with the evolution of LPE to advance the LAHB project, and enables us to perform advanced applications other than LAHB production utilizing CoA-linked substrates.


Assuntos
Coenzima A-Transferases , Ácido Láctico , Ácido Láctico/química , Coenzima A-Transferases/metabolismo , Coenzima A-Transferases/genética , Coenzima A-Transferases/química , Poliésteres/química , Acil Coenzima A/metabolismo , Acil Coenzima A/química , Polímeros/química , Acetilcoenzima A/metabolismo , Acetilcoenzima A/química
11.
Metab Eng ; 15: 159-66, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23202750

RESUMO

Xylose, which is a major constituent of lignocellulosic biomass, was utilized for the production of poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)], having transparent and flexible properties. The recombinant Escherichia coli JW0885 (pflA(-)) expressing LA-polymerizing enzyme (LPE) and monomer supplying enzymes grown on xylose produced a copolymer having a higher LA fraction (34mol%) than that grown on glucose (26mol%). This benefit of xylose was further enhanced by combining it with an evolved LPE (ST/FS/QK), achieving a copolymer production having 60mol% LA from xylose, while glucose gave a 47mol% LA under the same condition. The overall carbon yields from the sugars to the polymer were similar for xylose and glucose, but the ratio of the LA and 3HB units in the copolymer was different. Notably, the P(LA-co-3HB) yield from xylose (7.3gl(-1)) was remarkably higher than that of P(3HB) (4.1gl(-1)), indicating P(LA-co-3HB) as a potent target for xylose utilization.


Assuntos
Escherichia coli/fisiologia , Melhoramento Genético/métodos , Hidroxibutiratos/metabolismo , Ácido Láctico/metabolismo , Xilose/metabolismo , Evolução Molecular , Hidroxibutiratos/isolamento & purificação , Ácido Láctico/biossíntese , Poliésteres , Polímeros , Regulação para Cima
12.
Appl Environ Microbiol ; 79(19): 6134-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23913421

RESUMO

NADPH-dependent acetoacetyl-coenzyme A (acetoacetyl-CoA) reductase (PhaB) is a key enzyme in the synthesis of poly(3-hydroxybutyrate) [P(3HB)], along with ß-ketothiolase (PhaA) and polyhydroxyalkanoate synthase (PhaC). In this study, PhaB from Ralstonia eutropha was engineered by means of directed evolution consisting of an error-prone PCR-mediated mutagenesis and a P(3HB) accumulation-based in vivo screening system using Escherichia coli. From approximately 20,000 mutants, we obtained two mutant candidates bearing Gln47Leu (Q47L) and Thr173Ser (T173S) substitutions. The mutants exhibited kcat values that were 2.4-fold and 3.5-fold higher than that of the wild-type enzyme, respectively. In fact, the PhaB mutants did exhibit enhanced activity and P(3HB) accumulation when expressed in recombinant Corynebacterium glutamicum. Comparative three-dimensional structural analysis of wild-type PhaB and highly active PhaB mutants revealed that the beneficial mutations affected the flexibility around the active site, which in turn played an important role in substrate recognition. Furthermore, both the kinetic analysis and crystal structure data supported the conclusion that PhaB forms a ternary complex with NADPH and acetoacetyl-CoA. These results suggest that the mutations affected the interaction with substrates, resulting in the acquirement of enhanced activity.


Assuntos
Acil Coenzima A/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Cupriavidus necator/enzimologia , Evolução Molecular Direcionada , Hidroxibutiratos/metabolismo , NADP/metabolismo , Poliésteres/metabolismo , Acil Coenzima A/química , Oxirredutases do Álcool/química , Coenzimas/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Cristalografia por Raios X , Análise Mutacional de DNA , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Modelos Moleculares , Mutação de Sentido Incorreto , NADP/química , Reação em Cadeia da Polimerase , Conformação Proteica
13.
Biomacromolecules ; 14(6): 1913-8, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23688291

RESUMO

P[(R)-2-hydroxybutyrate] [P((R)-2HB)] is an aliphatic polyester analogous to poly(lactic acid) (PLA). However, little has been known for its properties because of a high cost of commercially available chiral 2HB as a starting substance for chemical polymer synthesis. In this study, P[(R)-2HB] and P[(R)-2HB-co-(R)-lactate] [P((R)-2HB-co-(R)-LA)] with a new monomer combination were successfully synthesized in recombinant Escherichia coli LS5218 from less-expensive racemic 2HB using an R-specific polyester synthase. The cells expressing an engineered polyhydroxyalkanoate synthase from Pseudomonas sp. 61-3 and propionyl-CoA transferase from Megasphaera elsdenii were grown on LB medium containing 2HB and glucose in a shake flask and accumulated up to 17 wt % of P[(R)-2HB] with optical purity of >99.1%. In addition, the same cells cultured in a jar-fermentor produced P(86 mol % 2HB-co-LA) copolymer. Notably, the molecular weights (Mw) of P(2HB) (27000) and P(2HB-co-LA) (39000) were 2- and 3-fold higher than that of P(2HB) previously synthesized by chemical polycondensation. P(2HB) was processed into a transparent film by solvent-casting and it had flexible properties with elongation at break of 173%, which was contrast to the rigid PLA. Regarding mechanical properties, P(2HB-co-LA) was tougher but less stretchy than P(2HB). These results demonstrated that P(2HB) has useful properties and LA units in 2HB-based polymers can act as a controllable modulator of the material properties. In addition, P[(R)-2HB] was efficiently degraded by treatment of Novozym 42044 (lipase) but not Savinase 16L (protease), indicating that the degrading behavior of the polymer was similar to that of P[(R)-LA].


Assuntos
Reatores Biológicos , Enzimas/metabolismo , Hidroxibutiratos/metabolismo , Lactatos/metabolismo , Polímeros/metabolismo , Cromatografia Líquida de Alta Pressão , Fermentação , Espectroscopia de Ressonância Magnética
14.
Appl Microbiol Biotechnol ; 97(18): 8011-21, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23955470

RESUMO

2-Hydroxyalkanoates (2HAs) have become the new monomeric constituents of bacterial polyhydroxyalkanoates (PHAs). PHAs containing 2HA monomers, lactate (LA), glycolate (GL), and 2-hydroxybutyrate (2HB) can be synthesized by engineered microbes in which the broad substrate specificities of PHA synthase and propionyl-CoA transferase are critical factors for the incorporation of the monomers into the polymer chain. LA-based polymers, such as P[LA-co-3-hydroxybutyrate (3HB)], have the properties of pliability and stretchiness which are distinctly different from those of the rigid poly(lactic acid) (PLA) and P(3HB) homopolymers. This versatile platform is also applicable to the biosynthesis of GL- and 2HB-based polymers. In the case of the synthesis of 2HB-based polymers, the enantiospecificity of PHA synthase enabled the production of isotactic (R)-2HB-based polymers, including P[(R)-2HB], from racemic precursors of 2HB. P(2HB) is a pliable material, in contrast to PLA. Furthermore, to obtain a new 2HA-polymerizing PHA synthase, the class I PHA synthase from Ralstonia eutropha was engineered so as to achieve the first incorporation of LA units. The analysis of the polymer synthesized using this new LA-polymerizing PHA synthase unexpectedly focused a spotlight on the studies on block copolymer biosynthesis.


Assuntos
Biopolímeros/biossíntese , Cupriavidus necator/metabolismo , Microbiologia Industrial/tendências , Poliésteres/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Cupriavidus necator/genética , Microbiologia Industrial/métodos
15.
Appl Microbiol Biotechnol ; 93(5): 1917-25, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22127753

RESUMO

The first biosynthetic system for lactate (LA)-based polyesters was previously created in recombinant Escherichia coli (Taguchi et al. 2008). Here, we have begun efforts to upgrade the prototype polymer production system to a practical stage by using metabolically engineered Gram-positive bacterium Corynebacterium glutamicum as an endotoxin-free platform. We designed metabolic pathways in C. glutamicum to generate monomer substrates, lactyl-CoA (LA-CoA), and 3-hydroxybutyryl-CoA (3HB-CoA), for the copolymerization catalyzed by the LA-polymerizing enzyme (LPE). LA-CoA was synthesized by D: -lactate dehydrogenase and propionyl-CoA transferase, while 3HB-CoA was supplied by ß-ketothiolase (PhaA) and NADPH-dependent acetoacetyl-CoA reductase (PhaB). The functional expression of these enzymes led to a production of P(LA-co-3HB) with high LA fractions (96.8 mol%). The omission of PhaA and PhaB from this pathway led to a further increase in LA fraction up to 99.3 mol%. The newly engineered C. glutamicum potentially serves as a food-grade and biomedically applicable platform for the production of poly(lactic acid)-like polyester.


Assuntos
Corynebacterium glutamicum/metabolismo , Ácido Láctico/metabolismo , Polímeros/metabolismo , Acil Coenzima A/metabolismo , Corynebacterium glutamicum/genética , Redes e Vias Metabólicas/genética , Poliésteres
16.
Sci Rep ; 12(1): 3393, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233015

RESUMO

Membrane vesicles (MVs) are formed in various microorganisms triggered by physiological and environmental phenomena. In this study, we have discovered that the biogenesis of MV took place in the recombinant cell of Escherichia coli BW25113 strain that intracellularly accumulates microbial polyester, polyhydroxybutyrate (PHB). This discovery was achieved as a trigger of foam formation during the microbial PHB fermentation. The purified MVs were existed as a mixture of outer MVs and outer/inner MVs, revealed by transmission electron microscopy. It should be noted that there was a good correlation between MV formation and PHB production level that can be finely controlled by varying glucose concentrations, suggesting the causal relationship in both supramolecules artificially produced in the microbial platform. Notably, the controllable secretion of MV was governed spatiotemporally through the morphological change of the E. coli cells caused by the PHB intracellular accumulation. Based on a hypothesis of PHB internal-pressure dependent envelope-disorder induced MV biogenesis, here we propose a new Polymer Intracellular Accumulation-triggered system for MV Production (designated "PIA-MVP") with presenting a mechanistic model for MV biogenesis. The PIA-MVP is a promising microbial platform that will provides us with a significance for further study focusing on biopolymer capsulation and cross-membrane transportation for different application purposes.


Assuntos
Escherichia coli , Polímeros , Escherichia coli/metabolismo , Fermentação , Hidroxibutiratos , Microscopia Eletrônica de Transmissão , Poliésteres/metabolismo
17.
Biosci Biotechnol Biochem ; 75(2): 364-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21307588

RESUMO

A biosynthetic pathway for poly(3-hydroxybutyrate) [P(3HB)] was developed in Escherichia coli and Corynebacterium glutamicum by an acetoacetyl-coenzyme A (CoA) synthase (AACS) recently isolated from terpenoid-producing Streptomyces sp. strain CL190. Expression of AACS led to significant productions of P(3HB) in E. coli (10.5 wt %) and C. glutamicum (19.7 wt %).


Assuntos
Coenzima A Ligases/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Acil Coenzima A/biossíntese , Biocatálise , Coenzima A Ligases/metabolismo , Expressão Gênica , Streptomyces/enzimologia
18.
Proc Natl Acad Sci U S A ; 105(45): 17323-7, 2008 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-18978031

RESUMO

Polylactate (PLA) is synthesized as a representative bio-based polyester by the chemo-bio process on the basis of metal catalyst-mediated chemical polymerization of lactate (LA) supplied by microbial fermentation. To establish the one-step microbial process for synthesis of LA-based polyesters, we explored whether polyhydroxyalkanoate (PHA) synthase would exhibit polymerizing activity toward a LA-coenzyme A (CoA), based on the fact that PHA monomeric constituents, especially 3-hydroxybutyrate (3HB), are structurally analogous to LA. An engineered PHA synthase was discovered as a candidate by a two-phase in vitro polymerization system previously developed. An LA-CoA producing Escherichia coli strain with a CoA transferase gene was constructed, and the generation of LA-CoA was demonstrated by capillary electrophoresis/MS analysis. Next, when the engineered PHA synthase gene was introduced into the resultant recombinant strain, we confirmed the one-step biosynthesis of the LA-incorporated copolyester, P(6 mol% LA-co-94 mol% 3HB), with a number-average molecular weight of 1.9 x 10(5), as revealed by gel permeation chromatography, gas chromatography/MS, and NMR.


Assuntos
Aciltransferases/metabolismo , Coenzima A/metabolismo , Escherichia coli/metabolismo , Ácido Láctico/biossíntese , Aciltransferases/genética , Cromatografia Gasosa , Eletroforese Capilar , Escherichia coli/genética , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular , Poliésteres , Polímeros , Engenharia de Proteínas
19.
Int J Biol Macromol ; 167: 1290-1296, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33202278

RESUMO

Poly((R)-3-hydroxybutyrate) (P(3HB)) is a polyester that is synthesized and accumulated in many prokaryotic cells. Recently, a new culture method for the secretion of the intracellularly synthesized (R)-3-hydroxybutyrate oligomer (3HBO) from recombinant Escherichia coli cells was developed. In this study, we attempted to produce microbial 3HBO capped with a diethylene glycol terminal (3HBO-DEG) as a macromonomer for polymeric materials. First, we prepared recombinant E. coli strains harboring genes encoding various polyhydroxyalkanoate (PHA) synthases (PhaC, PhaEC or PhaRC) that can incorporate chain transfer (CT) agents such as DEG into the polymer's terminal and generate CT end-capped oligomers. To this end, each strain was cultivated under DEG supplemental conditions, and the synthesis of 3HBO-DEG was confirmed. As a result, the highest secretory production of 3HBO-DEG was observed for the PHA synthase derived from Bacillus cereus YB-4 (PhaRCYB4). To evaluate the usability of the secreted 3HBO-DEG as a macromonomer, 3HBO-DEG was purified from the culture medium and polymerized with 4,4'-diphenylmethane diisocyanate as a spacer compound. Characterization of the polymeric products revealed that 3HBO-based polyurethane was successfully obtained and was a flexible and transparent noncrystalline polymer, unlike P(3HB). These results suggested that microbial 3HBO-DEG is a promising platform building block for synthesizing polyurethane and various other polymers.


Assuntos
Ácido 3-Hidroxibutírico/biossíntese , Aciltransferases/genética , Bacillus cereus/genética , Escherichia coli/genética , Etilenoglicóis/metabolismo , Poliuretanos/química , Poliuretanos/síntese química , Ácido 3-Hidroxibutírico/análise , Ácido 3-Hidroxibutírico/química , Aciltransferases/metabolismo , Cromatografia em Gel , Meios de Cultura , Escherichia coli/metabolismo , Etilenoglicóis/química , Isocianatos/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Microrganismos Geneticamente Modificados , Via Secretória/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Termografia
20.
Biomacromolecules ; 11(3): 815-9, 2010 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-20166718

RESUMO

Lactate (LA)-polymerizing enzyme (LPE) is a newly established class of polyhydroxyalkanoate (PHA) synthase, which can incorporate LA units into a polymer chain. We previously synthesized P(LA-co-3-hydroxybutyrate)s [P(LA-co-3HB)s] in recombinant Escherichia coli using the first LPE, which is the Ser325Thr/Glu481Lys mutant of PHA synthase from Pseudomonas sp. 61-3 [PhaC1(Ps)ST/QK]. In this study, we finely regulated LA fraction in the copolymer by saturated mutations at position 392 (F392X), which corresponds to the activity-enhancing mutations at position 420 of PHA synthase from Ralstonia eutropha. Among the 19 saturated mutants of LPE at position 392, 17 mutants produced P(LA-co-3HB)s with various LA fractions (16-45 mol %), whereas PhaC1(Ps)ST/QK produced P(LA-co-3HB) with 26 mol % LA under the same culture condition. In particular, the F392S mutation exhibited the highest LA fraction of 45 mol %, and also increased polymer content (62 wt %) compared with PhaC1(Ps)ST/QK (44 wt %). Combination of the F392S mutant and anaerobic culture conditions, which promote LA production, led to a further increase in LA fraction up to 62 mol %. The P(LA-co-3HB)s with various LA fractions exhibited altered melting temperatures and melting enthalpy depending on their monomer composition. Accordingly, the mutations at position 392 in LPE greatly contributed to fine-tuning of the LA fraction in the copolymers that is useful for regulating LA fraction-dependent thermal properties.


Assuntos
Enzimas/metabolismo , Ácido Láctico/metabolismo , Poliésteres/metabolismo , Anaerobiose , Sequência de Bases , Primers do DNA , Escherichia coli/genética , Peso Molecular , Mutagênese Sítio-Dirigida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA