Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Pharm Res ; 40(7): 1709-1722, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35460023

RESUMO

PURPOSE: To investigate the difference in methods to determine the osmolality in solutions of stabilizers used for long-acting injectable suspensions. METHODS: The osmolality was measured by freezing point depression and vapor pressure for 11 different polymers and surfactants (PEG 3350, 4000, 6000, 8000, 20,000, PVP K12, K17 and K30, poloxamer 188, 388 and 407, HPMC E5, Na-CMC, polysorbate 20 and 80, vitamin E-TPGS, phospholipid, DOSS and SDS) in different concentrations. RESULTS: Independently of the measuring method, an increase in osmolality with increasing concentration was observed for all polymers and surfactants, as would be expected due to the physicochemical origin of the osmolality. No correlation was found between the molecular weight of the polymers and the measured osmolality. The osmolality values were different for PVPs, PEGs, and Na-CMC using the two different measurement methods. The values obtained by the freezing point depression method tended to be similar or higher than the ones provided by vapor pressure, overall showing a significant difference in the osmolality measured by the two investigated methods. CONCLUSIONS: For lower osmolality values (e.g. surfactants), the choice of the measuring method was not critical, both the freezing point depression and vapor pressure could be used. However, when the formulations contained higher concentrations of excipients and/or thermosensitive excipients, the data suggests that the vapor pressure method would be more suited.


Assuntos
Depressão , Excipientes , Pressão de Vapor , Congelamento , Concentração Osmolar , Polímeros , Tensoativos
2.
Mol Pharm ; 18(8): 3050-3062, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34250800

RESUMO

In this work, we employed broad-band dielectric spectroscopy to determine the solubility limits of nimesulide in the Kollidon VA64 matrix at ambient and elevated pressure conditions. Our studies confirmed that the solubility of the drug in the polymer matrix decreases with increasing pressure, and molecular dynamics controls the process of recrystallization of the excess of amorphous nimesulide from the supersaturated drug-polymer solution. More precisely, recrystallization initiated at a certain structural relaxation time of the sample stops when a molecular mobility different from the initial one is reached, regardless of the temperature and pressure conditions. Finally, based on the presented results, one can conclude that by transposing vertically the results obtained at elevated pressures, one can obtain the solubility limit values corresponding to low temperatures. This approach was validated by the comparison of the experimentally determined points with the theoretically obtained values based on the Flory-Huggins theory.


Assuntos
Química Farmacêutica/métodos , Espectroscopia Dielétrica/métodos , Composição de Medicamentos/métodos , Polímeros/química , Pressão , Sulfonamidas/química , Temperatura , Varredura Diferencial de Calorimetria/métodos , Cristalização , Estabilidade de Medicamentos , Pirrolidinas/química , Solubilidade , Soluções , Compostos de Vinila/química
3.
Mol Pharm ; 15(11): 5192-5206, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30252481

RESUMO

Liquid crystalline (LC) materials and their nonmedical applications have been known for decades, especially in the production of displays; however, the pharmaceutical implications of the LC state are inadequately appreciated, and the misunderstanding of experimental data is leading to possible errors, especially in relation to the physical stability of medicines. The aim of this work was to study LC phases of itraconazole (ITZ), an azole antifungal active molecule, and for the first time, to generate full thermodynamic phase diagrams for ITZ/polymer systems, taking into account isotropic and anisotropic phases that this drug can form. It was found that supercooled ITZ does not form an amorphous but a vitrified smectic (vSm) phase with a glass transition temperature of 59.35 °C (determined using a 10 °C/min heating rate), as is evident from X-ray diffraction and thermomicroscopic (PLM) experiments. Two endothermic LC events with the onset temperature values for a smectic to nematic transition of 73.2 ± 0.4 °C and a nematic to isotropic transformation at 90.4 ± 0.35 °C and enthalpies of transition of 416 ± 34 J/mol and 842 ± 10 J/mol, respectively, were recorded. For the binary supercooled mixtures, PLM and differential scanning calorimetry showed a phase separation with birefringent vSm persistent over a wide polymer range, as noticed especially for the hypromellose acetate succinate (HAS) systems. Both, smectic and nematic, phases were detected for the supercooled ITZ/HAS and ITZ/methacrylic acid-ethyl acrylate copolymer (EUD) mixtures, while geometric restrictions inhibited the smectic formation in the ITZ/poly(acrylic acid) (CAR) systems. The Flory-Huggins lattice theory coupled with the Maier-Saupe-McMillan approach to model anisotropic ordering of molecules was successfully utilized to create phase diagrams for all ITZ/polymer mixtures. It was concluded that in a supercooled ITR/polymer mix, if ITZ is present in a LC phase, immiscibility as a result of molecule anisotropy is afforded. This study shows that the LC nature of ITZ cannot be disregarded when designing stable formulations containing this molecule.


Assuntos
Antifúngicos/química , Composição de Medicamentos/métodos , Itraconazol/química , Cristais Líquidos/química , Anisotropia , Química Farmacêutica , Cristalização , Estabilidade de Medicamentos , Derivados da Hipromelose/química , Metacrilatos/química , Transição de Fase , Polímeros/química , Solubilidade , Temperatura de Transição
4.
Pharm Dev Technol ; 23(4): 343-350, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28145793

RESUMO

Copaiba oleoresin (CPO), obtained from Copaifera landgroffii, is described as active to a large number of diseases and more recently in the endometriosis treatment. In this work, poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing CPO were obtained using the design of experiments (DOE) as a tool to optimize the production process. The nanoparticles optimized by means of DOE presented an activity in relation to the cellular viability of endometrial cells. The DOE showed that higher amounts of CPO combined with higher surfactant concentrations resulted in better encapsulation efficiency and size distribution along with good stability after freeze drying. The encapsulation efficiency was over 80% for all produced nanoparticles, which also presented sizes below 300 nm and spherical shape. A decrease in viability of endometrial stromal cells from ectopic endometrium of patients with endometriosis and from eutopic endometriotic lesions was demonstrated after 48 h of incubation with the CPO nanoparticles. The nanoparticles without CPO were not able to alter the cell viability of the same cells, indicating that this material was not cytotoxic to the tested cells and suggesting that the effect was specific to CPO. The results indicate that the use of CPO nanoparticles may represent a promising alternative for the treatment of endometriosis.


Assuntos
Portadores de Fármacos/química , Ácido Láctico/química , Nanopartículas/química , Preparações de Plantas/administração & dosagem , Ácido Poliglicólico/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Endometriose/tratamento farmacológico , Fabaceae/química , Feminino , Liofilização , Humanos , Tamanho da Partícula , Preparações de Plantas/química , Preparações de Plantas/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
5.
Mol Pharm ; 14(7): 2209-2223, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28570079

RESUMO

Ciprofloxacin (CIP) is a poorly soluble drug that also displays poor permeability. Attempts to improve the solubility of this drug to date have largely focused on the formation of crystalline salts and metal complexes. The aim of this study was to prepare amorphous solid dispersions (ASDs) by ball milling CIP with various polymers. Following examination of their solid state characteristics and physical stability, the solubility advantage of these ASDs was studied, and their permeability was investigated via parallel artificial membrane permeability assay (PAMPA). Finally, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the ASDs were compared to those of CIP. It was discovered that acidic polymers, such as Eudragit L100, Eudragit L100-55, Carbopol, and HPMCAS, were necessary for the amorphization of CIP. In each case, the positively charged secondary amine of CIP was found to interact with carboxylate groups in the polymers, forming amorphous polymeric drug salts. Although the ASDs began to crystallize within days under accelerated stability conditions, they remained fully X-ray amorphous following exposure to 90% RH at 25 °C, and demonstrated higher than predicted glass transition temperatures. The solubility of CIP in water and simulated intestinal fluid was also increased by all of the ASDs studied. Unlike a number of other solubility enhancing formulations, the ASDs did not decrease the permeability of the drug. Similarly, no decrease in antibiotic efficacy was observed, and significant improvements in the MIC and MBC of CIP were obtained with ASDs containing HPMCAS-LG and HPMCAS-MG. Therefore, ASDs may be a viable alternative for formulating CIP with improved solubility, bioavailability, and antimicrobial activity.


Assuntos
Ciprofloxacina/química , Polímeros/química , Resinas Acrílicas/química , Metilcelulose/análogos & derivados , Metilcelulose/química , Testes de Sensibilidade Microbiana , Ácidos Polimetacrílicos/química , Solubilidade
6.
Mol Pharm ; 14(11): 3718-3728, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28922604

RESUMO

Fluid bed coating offers potential advantages as a formulation platform for amorphous solid dispersions (ASDs) of poorly soluble drugs, being a one-step manufacturing process which could reduce the risk of phase separation associated with multiple step manufacturing approaches. However, the impact of the physicochemical nature of nonpareil carriers on the properties and drug release from the ASDs has not been studied in detail. In this work, tartaric acid (TAP) and microcrystalline cellulose (CEL) spheres were chosen as examples of functional and inert beads, respectively. Two structurally related triazole antifungals, itraconazole (ITR) and posaconazole (POS), were chosen as model drugs. Solid-state investigations revealed that the fluidized bed process result in both types of spheres uniformly coated with ITR and POS ASDs based on Eudragit L100-55 (EUD). A single glass transition temperature (Tg) was determined for each of the ASDs. Infrared studies suggested the presence of a weak interaction between POS and TAP, which translated into premature release of POS from the POS/EUD ASD coated TAP spheres in FaSSGF and subsequently lower POS cumulative release in comparison to the ASD coated on CEL beads. High resolution investigations of morphological and compositional changes during dissolution, using scanning electron microscopy and atomic force microscopy coupled with nanoscale thermal investigation, revealed that crystallization of the drug from the ASDs was induced during dissolution when TAP spheres were used as carriers. In contrast, ASDs coated on CEL underwent phase separation and drug-rich nanospecies were formed in the matrix due to the solubility gap between the drug and EUD in FaSSIF. This study demonstrates that properties of carrier for the ASD fundamentally affect the drug release properties and the proper selection of carrier beads is critical to ensure product quality.


Assuntos
Antifúngicos/química , Itraconazol/química , Triazóis/química , Celulose/química , Tartaratos/química
7.
Pharm Res ; 34(11): 2425-2439, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28875408

RESUMO

PURPOSE: To improve the pharmaceutical properties of amorphous ciprofloxacin (CIP) succinate salts via formulation as polymer/amorphous salt solid dispersions (ASSDs). METHODS: ASSDs consisting of an amorphous CIP/succinic acid 1:1 or 2:1 salt dispersed in PVP or Soluplus were produced by spray drying and ball milling. The solid state characteristics, miscibility, stability, solubility and passive transmembrane permeability of the ASSDs were then examined. RESULTS: The ASSDs had higher glass transition and crystallization temperatures than the corresponding amorphous succinate salts, and were also more stable during long-term stability studies. The results of inverse gas chromatography and thermal analysis indicated that the salts and polymers form a miscible mixture. The solubility of the pure drug in water and biorelevant media was significantly increased by all of the formulations. The permeability of the ASSDs did not differ significantly from that of the amorphous CIP succinate salts, however all samples were less permeable than the pure crystalline drug. CONCLUSIONS: The formulation of amorphous CIP succinate salts as ASSDs with polymer improved their long-term stability, but did not significantly affect their solubility or permeability.


Assuntos
Ciprofloxacina/química , Polietilenoglicóis/química , Polivinil/química , Povidona/química , Cloreto de Sódio/química , Química Farmacêutica/métodos , Cristalização , Dessecação , Composição de Medicamentos , Estabilidade de Medicamentos , Permeabilidade , Transição de Fase , Solubilidade , Temperatura
8.
Mol Pharm ; 12(9): 3408-19, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26214347

RESUMO

In this study, a comparison of different methods to predict drug-polymer solubility was carried out on binary systems consisting of five model drugs (paracetamol, chloramphenicol, celecoxib, indomethacin, and felodipine) and polyvinylpyrrolidone/vinyl acetate copolymers (PVP/VA) of different monomer weight ratios. The drug-polymer solubility at 25 °C was predicted using the Flory-Huggins model, from data obtained at elevated temperature using thermal analysis methods based on the recrystallization of a supersaturated amorphous solid dispersion and two variations of the melting point depression method. These predictions were compared with the solubility in the low molecular weight liquid analogues of the PVP/VA copolymer (N-vinylpyrrolidone and vinyl acetate). The predicted solubilities at 25 °C varied considerably depending on the method used. However, the three thermal analysis methods ranked the predicted solubilities in the same order, except for the felodipine-PVP system. Furthermore, the magnitude of the predicted solubilities from the recrystallization method and melting point depression method correlated well with the estimates based on the solubility in the liquid analogues, which suggests that this method can be used as an initial screening tool if a liquid analogue is available. The learnings of this important comparative study provided general guidance for the selection of the most suitable method(s) for the screening of drug-polymer solubility.


Assuntos
Acetaminofen/química , Celecoxib/química , Cloranfenicol/química , Estabilidade de Medicamentos , Felodipino/química , Indometacina/química , Polímeros/química , Varredura Diferencial de Calorimetria , Química Farmacêutica , Cristalização/métodos , Povidona/química , Pirrolidinonas/química , Solubilidade , Termodinâmica , Compostos de Vinila/química
9.
Int J Pharm ; 626: 122193, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36108993

RESUMO

The first step of a successful nanoformulation development is preformulation studies, in which the best excipients, drug-excipient compatibility and interactions can be identified. During the formulation, the critical process parameters and their impact must be studied to establish the stable system with a high drug entrapment efficiency (EE). This work followed these steps to develop nanostructured lipid carriers (NLCs) to deliver the antibiotic levofloxacin (LV). The preformulation studies covered drug solubility in excipients and thorough characterization using thermal analysis, X-ray diffraction and spectroscopy. A design of experiment based on the process parameters identified nanoparticles with < 200 nm in size, polydispersity <= 0.3, zeta potential -21 to -24 mV, high EE formulations (>71 %) and an acceptable level of LV degradation products (0.37-1.13 %). To the best of our knowledge, this is the first time that a drug degradation is reported and studied in work on nanostructured lipids. LV impurities following the NLC production were detected, mainly levofloxacin N-oxide, a degradation product that has no antimicrobial activity and could interfere with LV quantification in spectrophotometric experiments. Also, the achievement of the highest EE in lipid nanoparticles than those described in the literature to date and the apparent protective action of NLC of entrapped-LV against degradation are important findings.


Assuntos
Nanopartículas , Nanoestruturas , Antibacterianos , Portadores de Fármacos/química , Excipientes/química , Levofloxacino , Lipídeos/química , Lipossomos , Nanopartículas/química , Nanoestruturas/química , Óxidos , Tamanho da Partícula
10.
Mol Pharm ; 8(2): 532-42, 2011 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-21323367

RESUMO

Formulations containing amorphous active pharmaceutical ingredients (APIs) present great potential to overcome problems of limited bioavailability of poorly soluble APIs. In this paper, we directly compare for the first time spray drying and milling as methods to produce amorphous dispersions for two binary systems (poorly soluble API)/excipient: sulfathiazole (STZ)/polyvinylpyrrolidone (PVP) and sulfadimidine (SDM)/PVP. The coprocessed mixtures were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and intrinsic dissolution tests. PXRD and DSC confirmed that homogeneous glassy solutions (mixture with a single glass transition) of STZ/PVP were obtained for 0.05 ≤ X(PVP) (PVP weight fraction) < 1 by spray drying and for 0.6 ≤ X(PVP) < 1 by milling (at 400 rpm), and homogeneous glassy solutions of SDM/PVP were obtained for 0 < X(PVP) < 1 by spray drying and for 0.7 ≤ X(PVP) < 1 by milling. For these amorphous composites, the value of T(g) for a particular API/PVP ratio did not depend on the processing technique used. Variation of T(g) versus concentration of PVP was monotonic for all the systems and matched values predicted by the Gordon-Taylor equation indicating that there are no strong interactions between the drugs and PVP. The fact that amorphous SDM can be obtained on spray drying but not amorphous STZ could not be anticipated from the thermodynamic driving force of crystallization, but may be due to the lower molecular mobility of amorphous SDM compared to amorphous STZ. The solubility of the crystalline APIs in PVP was determined and the activities of the two APIs were fitted to the Flory-Huggins model. Comparable values of the Flory-Huggins interaction parameter (χ) were determined for the two systems (χ = -1.8 for SDM, χ = -1.5 for STZ) indicating that the two APIs have similar miscibility with PVP. Zones of stability and instability of the amorphous dispersions as a function of composition and temperature were obtained from the Flory-Huggins theory and the Gordon-Taylor equation and were found to be comparable for the two APIs. Intrinsic dissolution studies in aqueous media revealed that dissolution rates increased in the following order: physical mix of unprocessed materials < physical mix of processed material < coprocessed materials. This last result showed that production of amorphous dispersions by co-milling can significantly enhance the dissolution of poorly soluble drugs to a similar magnitude as co-spray dried systems.


Assuntos
Dessecação , Composição de Medicamentos , Polímeros/química , Povidona/química , Sulfametazina/química , Sulfatiazóis/química , Varredura Diferencial de Calorimetria , Estabilidade de Medicamentos , Excipientes/química , Excipientes/metabolismo , Polímeros/metabolismo , Povidona/metabolismo , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfametazina/metabolismo , Sulfatiazol , Sulfatiazóis/metabolismo , Termodinâmica , Difração de Raios X
11.
Mol Pharm ; 8(5): 1887-98, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21882837

RESUMO

For therapeutic peptides, the lung represents an attractive, noninvasive route into the bloodstream. To achieve optimal bioavailability and control their fast rate of absorption, peptides can be protected by coprocessing with polymers such as polyethylene glycol (PEG). Here, we formulated and characterized salmon calcitonin (sCT)-loaded microparticles using linear or branched PEG (L-PEG or B-PEG) and hydroxypropyl-beta-cyclodextrin (HPßCD) for pulmonary administration. Mixtures of sCT, L-PEG or B-PEG and HPßCD were co-spray dried. Based on the particle properties, the best PEG:HPßCD ratio was 1:1 w:w for both PEGs. In the sCT-loaded particles, the L-PEG was more crystalline than B-PEG. Thus, L-PEG-based particles had lower surface free energy and better aerodynamic behavior than B-PEG-based particles. However, B-PEG-based particles provided better protection against chemical degradation of sCT. A decrease in sCT permeability, measured across Calu-3 bronchial epithelial monolayers, occurred when the PEG and HPßCD concentrations were both 1.6 wt %. This was attributed to an increase in buffer viscosity, caused by the two excipients. sCT pharmacokinetic profiles in Wistar rats were evaluated using a 2-compartment model after iv injection or lung insufflation. The maximal sCT plasma concentration was reached within 3 min following nebulization of sCT solution. L-PEG and B-PEG-based microparticles were able to increase T(max) to 20 ± 1 min and 18 ± 8 min, respectively. Furthermore, sCT absolute bioavailability after L-PEG-based microparticle aerosolization at 100 µg/kg was 2.3 times greater than for the nebulized sCT solution.


Assuntos
Conservadores da Densidade Óssea/administração & dosagem , Brônquios/metabolismo , Calcitonina/administração & dosagem , Sistemas de Liberação de Medicamentos , Polietilenoglicóis/química , Mucosa Respiratória/metabolismo , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Disponibilidade Biológica , Transporte Biológico , Conservadores da Densidade Óssea/sangue , Conservadores da Densidade Óssea/metabolismo , Conservadores da Densidade Óssea/farmacocinética , Calcitonina/sangue , Calcitonina/metabolismo , Calcitonina/farmacocinética , Linhagem Celular , Fenômenos Químicos , Química Farmacêutica , Estabilidade de Medicamentos , Proteínas de Peixes/administração & dosagem , Proteínas de Peixes/sangue , Proteínas de Peixes/metabolismo , Proteínas de Peixes/farmacocinética , Meia-Vida , Masculino , Teste de Materiais , Tamanho da Partícula , Ratos , Ratos Wistar
12.
Eur J Pharm Biopharm ; 144: 57-67, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31493509

RESUMO

Itraconazole (ITR) is a broad-spectrum antifungal drug with a very low solubility. In this work, the application of a heat induced evaporative antisolvent nanoprecipitation process yielded disordered nanoparticles (NPs) of ITR. The inclusion of different types of poly(ethylene glycol) (PEG) allowed PEGylation of NPs by adsorption to be achieved. The NP dispersions were composed of monodispersed particles in a nanometric size range (<290 nm) and although PEGylation had no impact on the average particle size, the surface potential was partially neutralised in the modified NPs. The solid state analysis using powder X-ray diffraction and thermal analysis revealed a disordered, liquid crystalline smectic organisation of the non-PEGylated NPs, while some of the PEGylated NPs were more crystalline. The PEGylated NPs exhibited mucoadhesive potential in stationary conditions (dynamic light scattering analysis) but when flow conditions were applied (nanoparticle tracking analysis and quartz crystal microbalance with dissipation) the particles had mucopenetrative properties. The non-PEGylated ITR NPs did not interact with mucin and therefore, this system was considered as having a mucopenetrative character. This study demonstrates that the properties of NPs made of organic drug molecules can be modified by the addition of polymers, which may impact on their interaction with mucin and therefore on their potential systemic absorption.


Assuntos
Adesivos/química , Itraconazol/química , Nanopartículas/química , Polietilenoglicóis/química , Polímeros/química , Adsorção/efeitos dos fármacos , Antifúngicos/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Tamanho da Partícula , Solubilidade/efeitos dos fármacos , Propriedades de Superfície/efeitos dos fármacos
13.
Eur J Pharm Biopharm ; 130: 314-326, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30012404

RESUMO

Sample complexity and polydispersity presents challenges surrounding particle size measurements for nanoparticles (NPs). To ensure the delivery of high quality products to the marketplace it is imperative that this task is performed with the greatest accuracy and certainty. For this reason, particle sizing via more than one technique is critical to the success of the formulation process. Dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) are techniques that size particles based on their Brownian motion in liquid medium. However, each technique has advantages and disadvantages associated with its application. This study was designed with the intent of comparing these techniques in a critical manner. NPs were formed using three Biopharmaceutics Classification System class II compounds: itraconazole, ketoconazole and posaconazole, using an anti-solvent addition, bottom up method. The impact of polyethylene glycol, polyethylene glycol methyl ether and polyethylene glycol dimethyl ether with a molecular weight 2000 Da, as stabilizers, was assessed using these two particle sizing techniques. Mie light scattering theory was successfully used to explain the relationship between material composition and particle scattering power. A change in material refractive index, associated with an amorphous to crystalline solid state transformation, was predominantly responsible for the observed change in the light scattering power of posaconazole nano-dispersions. The innovative application of NTA for the live tracking of these physical processes was explored for the first time. This novel finding can serve to deepen our understanding of the dynamic crystallisation pathway undertaken by a nanoparticle.


Assuntos
Itraconazol/administração & dosagem , Cetoconazol/administração & dosagem , Nanopartículas , Triazóis/administração & dosagem , Antifúngicos/administração & dosagem , Antifúngicos/química , Química Farmacêutica/métodos , Cristalização , Difusão Dinâmica da Luz , Excipientes/química , Itraconazol/química , Cetoconazol/química , Tamanho da Partícula , Polietilenoglicóis/química , Solventes/química , Tecnologia Farmacêutica/métodos , Triazóis/química
14.
Int J Pharm ; 552(1-2): 27-38, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30236648

RESUMO

This work investigates the impact of nanoparticle (NP) composition and effectiveness of cryo-/lyo-protectants in a freeze drying process, which was employed to convert liquid dispersions of polyelectrolyte complex (PEC) NPs into completely redispersible powders. PEC NPs, with and without peptide, were produced by complex coacervation. The cryo-/lyo-protectants investigated were mannitol, trehalose (TRE) and poly(ethylene glycol) (PEG). The solid state of lyophilised powders was studied by thermal analysis and X-ray diffraction. Cytotoxicity studies were done by MTS assay and flow cytometry. The presence of a cryoprotectant was essential to achieve a successful powder reconstitution. The concentration of TRE was optimised for each type of PEC NPs. Protamine- and hyaluronate-based NPs reconstituted better than chitosan- and chondroitin sulphate-based NPs, respectively. PEG polymers were found to be more effective cryoprotectants than TRE and best results were achieved using co-freeze drying of NPs with TRE and PEG. These ternary NPs/TRE/PEG samples were crystalline, with expected better storage stability. PEG polymers were well tolerated by Caco-2 cells, with the exception of linear PEG 10 kDa. This work shows that, as regards the formulation design and maximising NP loading in the dried product, optimisation of the cryoprotectant type and content is needed as it is highly dependent not only on the type of polyelectrolyte pair in the PEC, but also the polyions ratio.


Assuntos
Quitosana/química , Sulfatos de Condroitina/química , Crioprotetores/química , Ácido Hialurônico/química , Nanopartículas/química , Protaminas/química , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Quitosana/administração & dosagem , Sulfatos de Condroitina/administração & dosagem , Crioprotetores/administração & dosagem , Liofilização , Humanos , Ácido Hialurônico/administração & dosagem , Nanopartículas/administração & dosagem , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Protaminas/administração & dosagem , Trealose/administração & dosagem , Trealose/química
15.
Eur J Pharm Sci ; 24(5): 553-63, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15784345

RESUMO

The aim of this study was to evaluate the possible interactions in the solid state between the thiazide diuretics: bendroflumethiazide (BFMT), hydroflumethiazide (HFMT) and hydrochlorothiazide (HCT) and polyvinylpyrrolidone (PVP) following processing. The glass transition temperatures (T(g)s) of a range of binary co-spray-dried PVP-thiazide composites were determined and compared to the predictions of the Gordon-Taylor, Fox, Couchman-Karasz, Kwei and Schneider equations. The solid composites of the thiazide diuretics and PVP were prepared by a spray drying technique. Properties of composites were determined with the use of helium pycnometry and FTIR spectroscopy. For many systems studied the experimentally detected T(g)s exhibited large positive deviations when compared with the values predicted by the Gordon-Taylor, Fox and Couchman-Karasz equations. The data was better fitted by the Schneider equation consistent with a drug-polymer interaction. FTIR analysis revealed that strong hydrogen bonding between the sulphonamide groups of the thiazide diuretics and the PVP molecule was responsible for the increase in the T(g)s. Additionally, in the case of BFMT-PVP composites, an interaction between the phenyl group and polymer ring was apparent. Glass transition-composition behaviour for amorphous drug-PVP composites deviated from the predictions of the commonly used Gordon-Taylor equation. Deviations were consistent with interactions between the components in the amorphous mixtures. The Schneider equation may be successfully applied to fit the Tg-composition profiles obtained, where other models fail to give good predictions.


Assuntos
Benzotiadiazinas , Povidona/química , Inibidores de Simportadores de Cloreto de Sódio/química , Varredura Diferencial de Calorimetria , Diuréticos , Ligação de Hidrogênio , Povidona/administração & dosagem , Inibidores de Simportadores de Cloreto de Sódio/administração & dosagem , Difração de Raios X
16.
Eur J Pharm Biopharm ; 96: 226-36, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26264714

RESUMO

The fabrication of drug nanoparticles (NPs) with process-mediated tunable properties and performances continues to grow rapidly during the last decades. This study investigates the synthesis and phase tuning of nanoparticulate itraconazole (ITR) mesophases using quasi nanoemulsion precipitation from acetone/water systems to seek out an alternative pathway to the nucleation-based NP formation. ITR liquid crystalline (LC) phases were formed and nematic-smectic mesomorphism was achieved via controlling solvent:antisolvent temperature difference (ΔTS:AS). The use of ΔTS:AS=49.5°C was associated with a nematic assembly, while intercalated smectic A layering was observed at ΔTS:AS=0°C, with both phases confined in the nanospheres at room temperature. The quasi emulsion system has not been investigated at the nanoscale to date and in contrary to the microscale, quasi nanoemulsion was observed over the solvent:antisolvent viscosity ratios of 1:7-1:1.4. Poly(acrylic acid) in the solvent phase exhibited a concentration dependent interaction when ITR formed NPs. This nanodroplet-based approach enabled the preparation of a stable ITR nanodispersion using Poloxamer 407 at 80°C, which was unachievable before using precipitation via nucleation. Findings of this work lay groundwork in terms of rationalised molecular assembly as a tool in designing pharmaceutical LC NPs with tailored properties.


Assuntos
Antifúngicos/química , Itraconazol/química , Nanopartículas/química , Antifúngicos/administração & dosagem , Precipitação Química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Emulsões , Excipientes/química , Temperatura Alta , Itraconazol/administração & dosagem , Cristais Líquidos , Micelas , Nanopartículas/ultraestrutura , Tamanho da Partícula , Poloxâmero/química , Solubilidade , Solventes/química , Propriedades de Superfície , Tensoativos/química , Viscosidade
17.
J Biomed Nanotechnol ; 10(12): 3658-73, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26000379

RESUMO

This work investigates a new type of polyelectrolyte complex nanocarrier composed of hyaluronic acid (HA) and protamine (PROT). Small (approximately 60 nm) and negatively charged nanoparticles (NPs) with a polydispersity index of less than 0.2 were obtained with properties that were dependent on the mixing ratio, concentration of polyelectrolytes and molecular weight of HA. Salmon calcitonin (sCT) was efficiently (up to 100%) associated with the NPs, and the drug loading (9.6-39% w/w) was notably high, possibly due to an interaction between HA and sCT. The NPs released -70-80% of the sCT after 24 hours, with the estimated total amount of released sCT depending on the amount of HA and PROT present in the NPs. The isoelectric point of the NPs was close to pH 2, and the negative surface charge was maintained above this pH. The HA/PROT nanoplexes protected the sCT from enzymatic degradation and showed low toxicity to intestinal epithelial cells, and thus may be a promising oral delivery system for peptides.


Assuntos
Calcitonina/administração & dosagem , Calcitonina/química , Sobrevivência Celular/efeitos dos fármacos , Ácido Hialurônico/química , Nanoconjugados/administração & dosagem , Nanoconjugados/química , Protaminas/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Células CACO-2 , Difusão , Estabilidade de Medicamentos , Eletrólitos/química , Humanos , Teste de Materiais , Nanoconjugados/ultraestrutura , Tamanho da Partícula
18.
J Biomed Nanotechnol ; 10(6): 1004-15, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24749395

RESUMO

The increasing use of gold nanoparticles in medical diagnosis and treatment has raised the concern over their blood compatibility. The interactions of nanoparticles with blood components may lead to platelet aggregation and endothelial dysfunction. Therefore, medical applications of gold nanoparticles call for increased nanoparticle stability and biocompatibility. Functionalisation of nanoparticles with polythelene glycol (PEGylation) is known to modulate cell-particle interactions. Therefore, the aim of the current study was to investigate the effects of PEGylated-gold nanoparticles on human platelet function and endothelial cells in vitro. Gold nanoparticles, 15 nm in diameter, were synthesised in water using sodium citrate as a reducing and stabilising agent. Functionalised polyethylene glycol-based thiol polymers were used to coat and stabilise pre-synthesised gold nanoparticles. The interaction of gold nanoparticles-citrate and PEGylated-gold nanoparticles with human platelets was measured by Quartz Crystal Microbalance with Dissipation. Platelet-nanoparticles interaction was imaged using phase-contrast, scanning and transmission electron microscopy. The inflammatory effects of gold nanoparticles-citrate and PEGylated-gold nanoparticles in endothelial cells were measured by quantitative real time polymerase chain reaction. PEGylated-gold nanoparticles were stable under physiological conditions and PEGylated-gold nanoparticles-5400 and PEGylated-gold nanoparticles-10800 did not affect platelet aggregation as measured by Quartz Crystal Microbalance with Dissipation. In addition, PEGylated-gold nanoparticles did not induce an inflammatory response when incubated with endothelial cells. Therefore, this study shows that PEGylated-gold nanoparticles with a higher molecular weight of the polymer chain are both platelet- and endothelium-compatible making them attractive candidates for biomedical applications.


Assuntos
Materiais Biocompatíveis/farmacologia , Plaquetas/fisiologia , Ouro/farmacologia , Nanopartículas Metálicas/administração & dosagem , Nanocápsulas/química , Ativação Plaquetária/fisiologia , Polietilenoglicóis/química , Materiais Biocompatíveis/síntese química , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Células Cultivadas , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura , Tamanho da Partícula , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/fisiologia , Polietilenoglicóis/farmacologia
19.
Int J Nanomedicine ; 8: 3129-39, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23990721

RESUMO

The oil of babassu tree nuts (Orbignya speciosa) is a potential alternative for treatment and prophylaxis of benign prostatic hyperplasia. Improved results can be obtained by drug vectorization to the hyperplastic tissue. The main objective of this work was the preparation and characterization of poly(lactic-co-glycolic acid) (PLGA) nanoparticle and clay nanosystems containing babassu oil (BBS). BBS was extracted from the kernels of babassu tree nuts and characterized by gas chromatography-mass spectrometry as well as 1H and 13C nuclear magnetic resonance. BBS-clay nanosystems were obtained by adding polyvinylpyrrolidone, Viscogel B8®, and BBS at a 2:1:1 mass ratio and characterized by X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, and laser diffraction. The PLGA-BBS nanoparticles were prepared by the precipitation-solvent evaporation method. Mean diameter, polydispersity, zeta potential, and scanning electron microscopic images of the nanosystems were analyzed. Thermogravimetric analysis showed successful formation of the nanocomposite. PLGA nanoparticles containing BBS were obtained, with a suitable size that was confirmed by scanning electron microscopy. Both nanostructured systems showed active incorporation yields exceeding 90%. The two systems obtained represent a new and potentially efficient therapy for benign prostatic hyperplasia.


Assuntos
Arecaceae/química , Nanocompostos/química , Óleos de Plantas/química , Ácido Láctico , Óleos de Plantas/farmacocinética , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
20.
Int J Pharm ; 436(1-2): 75-87, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22814226

RESUMO

The aim of this work was to study the formulation of pharmaceutically relevant polyelectrolyte complex nanoparticles (NPs) composed of hyaluronic acid (HA) and chitosan (CS) containing no crosslinkers. The influence of polymer mixing ratio, concentration and molecular weight as well as the type of counterion in chitosan salt on properties of the resulting NPs was examined. Formulations and their components were studied by laser light scattering, viscosity, infrared spectroscopy and microscopy. Physical stability, isoelectric points and cytotoxicity of selected NPs were determined. By appropriate modification of HA molecular weight, stable and non-sedimenting NPs were successfully formed. Sonication was found to be an effective method to reduce the molecular weight of HA from 2882±25 to 176±4 kDa with no chemical changes in the HA structure observed. High molecular weight CS formed micron-sized entities at all compositions investigated. Positively and negatively charged NPs were obtained depending on the mixing ratio of the polymers, with CS glutamate NPs yielding more negatively charged particles compared to CS chloride NPs. The smallest NPs (149±11 nm) were formed using HA with molecular weight of 176 kDa. Cytotoxicity of NPs was dependent on environmental pH but HA was found to exert cytoprotective effects on Caco-2 cells.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Ácido Hialurônico/química , Nanopartículas/química , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Quitosana/toxicidade , Cloretos/química , Portadores de Fármacos/toxicidade , Glutamatos/química , Humanos , Ácido Hialurônico/toxicidade , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Peso Molecular , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA