Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108764

RESUMO

Partial or whole regeneration of the uterine endometrium using extracellular matrix (ECM)-based scaffolds is a therapeutic strategy for uterine infertility due to functional and/or structural endometrial defects. Here, we examined whether the entire endometrium can be regenerated circumferentially using an acellular ECM scaffold (decellularized endometrial scaffold, DES) prepared from rat endometrium. We placed a silicone tube alone to prevent adhesions or a DES loaded with a silicone tube into a recipient uterus in which the endometrium had been surgically removed circumferentially. Histological and immunofluorescent analyses of the uteri one month after tube placement revealed more abundant regenerated endometrial stroma in the uterine horns treated with tube-loaded DES compared to those treated with a tube alone. Luminal and glandular epithelia, however, were not fully recapitulated. These results suggest that DES can enhance the regeneration of endometrial stroma but additional intervention(s) are needed to induce epithelization. Furthermore, the prevention of adhesions alone allowed the endometrial stroma to regenerate circumferentially even without a DES, but to a lesser degree than that with a DES. The use of a DES together with the prevention of adhesions may be beneficial for efficient endometrial regeneration in the uterus that is largely deficient of endometrium.


Assuntos
Endométrio , Útero , Feminino , Ratos , Animais , Endométrio/patologia , Epitélio , Matriz Extracelular/química , Silicones
2.
FASEB J ; 29(1): 182-92, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25351988

RESUMO

The oral cavity provides an entrance to the alimentary tract to serve as a protective barrier against harmful environmental stimuli. The oral mucosa is susceptible to injury because of its location; nonetheless, it has faster wound healing than the skin and less scar formation. However, the molecular pathways regulating this wound healing are unclear. Here, we show that transient receptor potential vanilloid 3 (TRPV3), a thermosensitive Ca(2+)-permeable channel, is more highly expressed in murine oral epithelia than in the skin by quantitative RT-PCR. We found that temperatures above 33°C activated TRPV3 and promoted oral epithelial cell proliferation. The proliferation rate in the oral epithelia of TRPV3 knockout (TRPV3KO) mice was less than that of wild-type (WT) mice. We investigated the contribution of TRPV3 to wound healing using a molar tooth extraction model and found that oral wound closure was delayed in TRPV3KO mice compared with that in WT mice. TRPV3 mRNA was up-regulated in wounded tissues, suggesting that TRPV3 may contribute to oral wound repair. We identified TRPV3 as an essential receptor in heat-induced oral epithelia proliferation and wound healing. Our findings suggest that TRPV3 activation could be a potential therapeutic target for wound healing in skin and oral mucosa.


Assuntos
Mucosa Bucal/lesões , Canais de Cátion TRPV/fisiologia , Cicatrização/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Temperatura Alta , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa Bucal/patologia , Mucosa Bucal/fisiopatologia , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética , Extração Dentária , Cicatrização/genética
3.
Nat Biomed Eng ; 5(8): 926-940, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34373601

RESUMO

Current protocols for the differentiation of human pluripotent stem cells (hPSCs) into chondrocytes do not allow for the expansion of intermediate progenitors so as to prospectively assess their chondrogenic potential. Here we report a protocol that leverages PRRX1-tdTomato reporter hPSCs for the selective induction of expandable and ontogenetically defined PRRX1+ limb-bud-like mesenchymal cells under defined xeno-free conditions, and the prospective assessment of the cells' chondrogenic potential via the cell-surface markers CD90, CD140B and CD82. The cells, which proliferated stably and exhibited the potential to undergo chondrogenic differentiation, formed hyaline cartilaginous-like tissue commensurate to their PRRX1-expression levels. Moreover, we show that limb-bud-like mesenchymal cells derived from patient-derived induced hPSCs can be used to identify therapeutic candidates for type II collagenopathy and we developed a method to generate uniformly sized hyaline cartilaginous-like particles by plating the cells on culture dishes coated with spots of a zwitterionic polymer. PRRX1+ limb-bud-like mesenchymal cells could facilitate the mass production of chondrocytes and cartilaginous tissues for applications in drug screening and tissue engineering.


Assuntos
Proteínas de Homeodomínio/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Pluripotentes/citologia , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Condrócitos/citologia , Condrócitos/metabolismo , Condrócitos/transplante , Condrogênese , Doenças do Colágeno/terapia , Meios de Cultura/química , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Pluripotentes/metabolismo , Polímeros/química , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Antígenos Thy-1/metabolismo , Engenharia Tecidual
4.
Histochem Cell Biol ; 132(4): 423-33, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19579031

RESUMO

The oral mucosa is a highly specialised, stratified epithelium that confers protection from infection and physical, chemical and thermal stimuli. The non-keratinised junctional epithelium surrounds each tooth like a collar and is easily attacked by foreign substances from the oral sulcus. We found that TRPV2, a temperature-gated channel, is highly expressed in junctional epithelial cells, but not in oral sulcular epithelial cells or oral epithelial cells. Dual or triple immunolabelling with immunocompetent cell markers also revealed TRPV2 expression in Langerhans cells and in dendritic cells and macrophages. Electron microscopy disclosed TRPV2 immunoreactivity in the unmyelinated and thinly myelinated axons within the connective tissue underlying the epithelium. TRPV2 labelling was also observed in venule endothelial cells. The electron-dense immunoreaction in junctional epithelial cells, macrophages and neural axons occurred on the plasma membrane, on invaginations of the plasma membrane and in vesicular structures. Because TRPV2 has been shown to respond to temperature, hypotonicity and mechanical stimuli, gingival cells expressing TRPV2 may act as sensor cells, detecting changes in the physical and chemical environment, and may play a role in subsequent defence mechanisms.


Assuntos
Tecido Conjuntivo/metabolismo , Inserção Epitelial/metabolismo , Mucosa Bucal/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Axônios/metabolismo , Tecido Conjuntivo/ultraestrutura , Células Dendríticas/metabolismo , Inserção Epitelial/ultraestrutura , Gengiva/metabolismo , Gengiva/ultraestrutura , Células de Langerhans/metabolismo , Macrófagos/metabolismo , Masculino , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Mucosa Bucal/ultraestrutura , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA