Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(42): 17997-18004, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32990434

RESUMO

Rate constants for bimolecular electron transfer (ET) increased with driving force, -ΔG°, reached a plateau, and then decreased in an inverted region. This rate data was described well by electron transfer theory subject to a diffusion-controlled limit. These were for ET from radical anions of polydecylthiophene (P3DT) to a series of acceptors in THF solution. When the donor was the smaller anion of quaterthiophene (T4•-) the inverted region was much less prominent and still less so for when the donor was the anion of bithiophene (T2•-). Description of the data using ET theory identifies smaller electronic couplings for the highly delocalized P3DT anions as enabling the inverted behavior: The presence of a Marcus inverted region is a consequence of delocalized electronic states. The results further imply that electronic couplings smaller than usually found for molecules in contact could boost efficiency of energy storage by electron transfer and identifies size-mismatch as an important concept in control of electronic couplings.


Assuntos
Polímeros/química , Tiofenos/química , Teoria da Densidade Funcional , Transporte de Elétrons , Estrutura Molecular , Soluções
2.
Cell Mol Gastroenterol Hepatol ; 17(5): 745-767, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38309455

RESUMO

BACKGROUND & AIMS: Colorectal cancer (CRC) is the third most common cancer in the world. Gut microbiota has recently been implicated in the development of CRC. Actinomyces odontolyticus is one of the most abundant bacteria in the gut of patients with very early stages of CRC. A odontolyticus is an anaerobic bacterium existing principally in the oral cavity, similar to Fusobacterium nucleatum, which is known as a colon carcinogenic bacterium. Here we newly determined the biological functions of A odontolyticus on colonic oncogenesis. METHODS: We examined the induction of intracellular signaling by A odontolyticus in human colonic epithelial cells (CECs). DNA damage levels in CECs were confirmed using the human induced pluripotent stem cell-derived gut organoid model and mouse colon tissues in vivo. RESULTS: A odontolyticus secretes membrane vesicles (MVs), which induce nuclear factor kappa B signaling and also produce excessive reactive oxygen species (ROS) in colon epithelial cells. We found that A odontolyticus secretes lipoteichoic acid-rich MVs, promoting inflammatory signaling via TLR2. Simultaneously, those MVs are internalized into the colon epithelial cells, co-localize with the mitochondria, and cause mitochondrial dysfunction, resulting in excessive ROS production and DNA damage. Induction of excessive DNA damage in colonic cells by A odontolyticus-derived MVs was confirmed in the gut organoid model and also in mouse colon tissues. CONCLUSIONS: A odontolyticus secretes MVs, which cause chronic inflammation and ROS production in colonic epithelial cells, leading to the initiation of CRC.


Assuntos
Colo , Células-Tronco Pluripotentes Induzidas , Camundongos , Animais , Humanos , Colo/microbiologia , Espécies Reativas de Oxigênio , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Células Epiteliais , Bactérias/genética
3.
J Exp Med ; 219(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35319724

RESUMO

The skeletal system consists of bones and teeth, both of which are hardened via mineralization to support daily physical activity and mastication. The precise mechanism for this process, especially how blood vessels contribute to tissue mineralization, remains incompletely understood. Here, we established an imaging technique to visualize the 3D structure of the tooth vasculature at a single-cell level. Using this technique combined with single-cell RNA sequencing, we identified a unique endothelial subtype specialized to dentinogenesis, a process of tooth mineralization, termed periodontal tip-like endothelial cells. These capillaries exhibit high angiogenic activity and plasticity under the control of odontoblasts; in turn, the capillaries trigger odontoblast maturation. Metabolomic analysis demonstrated that the capillaries perform the phosphate delivery required for dentinogenesis. Taken together, our data identified the fundamental cell-to-cell communications that orchestrate tooth formation, angiogenic-odontogenic coupling, a distinct mechanism compared to the angiogenic-osteogenic coupling in bones. This mechanism contributes to our understanding concerning the functional diversity of organotypic vasculature.


Assuntos
Células Endoteliais , Odontogênese , Animais , Diferenciação Celular , Camundongos , Odontoblastos , Odontogênese/genética , Osteogênese
4.
J Am Chem Soc ; 128(50): 16073-82, 2006 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-17165760

RESUMO

Electrons and holes were injected selectively into poly-2,7-(9,9-dihexylfluorene) (pF) dissolved in a tetrahydrofuran (THF) and a 1,2-dichloroethane (DCE) solution, respectively, using pulse radiolysis. Transient absorption spectra of monoions of both signs revealed two bands attributable to formation of polarons, one in the visible region (pF+* at 580 nm, pF-* at 600 nm) and another in the near-IR region. Additional confirmation for the identification of pF+* and pF-* comes from bimolecular charge-transfer reactions, such as bithiophene-* + pF --> pF-* or pF+* + TTA --> +TTA+* (TTA = tri-p-tolylamine), in which known radical ions transfer charge to pF or from pF. Difference absorption spectra of pF chemically reduced by sodium in THF provided a ratio of absorbance of anions formed to bleaching of the neutral band at 380 nm. In conjunction with pulse-radiolysis results, the data show that each polaron occupies 4.5 +/- 0.5 fluorene units, most probably contiguous units. Extensive reduction of pF by sodium also revealed resistance to formation of bipolarons: excess electrons reside as separate polarons when two or more electrons were injected. Redox equilibria with pyrene and terthiophene by pulse radiolysis established reversible one-electron redox potentials of E0(pF+/0) = +0.66 V and E0(pF0/-) = -2.65 V vs Fc+/0. Together with the excited-state energy, these results predict a singlet exciton binding energy of 0.2 eV for pF in the presence of 0.1 M tetrabutylammonium tetrafluoroborate. This binding energy would increase substantially without an electrolyte.


Assuntos
Elétrons , Fluorenos/química , Polímeros/química , Biologia , Radicais Livres/química , Íons/química , Cinética , Estrutura Molecular , Oxirredução , Sódio , Soluções , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA