Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 12(4): 2060-6, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22409386

RESUMO

As of yet, III-V p-type field-effect transistors (p-FETs) on Si have not been reported, due partly to materials and processing challenges, presenting an important bottleneck in the development of complementary III-V electronics. Here, we report the first high-mobility III-V p-FET on Si, enabled by the epitaxial layer transfer of InGaSb heterostructures with nanoscale thicknesses. Importantly, the use of ultrathin (thickness, ~2.5 nm) InAs cladding layers results in drastic performance enhancements arising from (i) surface passivation of the InGaSb channel, (ii) mobility enhancement due to the confinement of holes in InGaSb, and (iii) low-resistance, dopant-free contacts due to the type III band alignment of the heterojunction. The fabricated p-FETs display a peak effective mobility of ~820 cm(2)/(V s) for holes with a subthreshold swing of ~130 mV/decade. The results present an important advance in the field of III-V electronics.


Assuntos
Antimônio/química , Gálio/química , Índio/química , Membranas Artificiais , Nanoestruturas/química , Silício/química , Transistores Eletrônicos , Tamanho da Partícula , Porosidade , Propriedades de Superfície
2.
Nano Lett ; 11(11): 5008-12, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22007924

RESUMO

Nanoscale size effects drastically alter the fundamental properties of semiconductors. Here, we investigate the dominant role of quantum confinement in the field-effect device properties of free-standing InAs nanomembranes with varied thicknesses of 5-50 nm. First, optical absorption studies are performed by transferring InAs "quantum membranes" (QMs) onto transparent substrates, from which the quantized sub-bands are directly visualized. These sub-bands determine the contact resistance of the system with the experimental values consistent with the expected number of quantum transport modes available for a given thickness. Finally, the effective electron mobility of InAs QMs is shown to exhibit anomalous field and thickness dependences that are in distinct contrast to the conventional MOSFET models, arising from the strong quantum confinement of carriers. The results provide an important advance toward establishing the fundamental device physics of two-dimensional semiconductors.


Assuntos
Arsenicais/química , Índio/química , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Transporte de Elétrons , Teste de Materiais , Tamanho da Partícula
3.
Adv Healthc Mater ; 6(17)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28661047

RESUMO

Wearable, flexible healthcare devices, which can monitor health data to predict and diagnose disease in advance, benefit society. Toward this future, various flexible and stretchable sensors as well as other components are demonstrated by arranging materials, structures, and processes. Although there are many sensor demonstrations, the fundamental characteristics such as the dependence of a temperature sensor on film thickness and the impact of adhesive for an electrocardiogram (ECG) sensor are yet to be explored in detail. In this study, the effect of film thickness for skin temperature measurements, adhesive force, and reliability of gel-less ECG sensors as well as an integrated real-time demonstration is reported. Depending on the ambient conditions, film thickness strongly affects the precision of skin temperature measurements, resulting in a thin flexible film suitable for a temperature sensor in wearable device applications. Furthermore, by arranging the material composition, stable gel-less sticky ECG electrodes are realized. Finally, real-time simultaneous skin temperature and ECG signal recordings are demonstrated by attaching an optimized device onto a volunteer's chest.


Assuntos
Eletrocardiografia/instrumentação , Temperatura Cutânea/fisiologia , Adesivo Transdérmico , Dispositivos Eletrônicos Vestíveis , Impedância Elétrica , Géis , Nanotubos de Carbono/química , Polietilenotereftalatos/química
4.
ACS Appl Mater Interfaces ; 7(20): 11002-6, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25938381

RESUMO

Harnessing a natural power source such as the human body temperature or sunlight should realize ultimate low-power devices. In particular, macroscale and flexible actuators that do not require an artificial power source have tremendous potential. Here we propose and demonstrate electrically powerless polymer-based actuators operated at ambient conditions using a packaging technique in which the stimulating power source is produced by heat from the human body or sunlight. The actuating angle, force, and reliability are discussed as functions of temperature and exposure to sunlight. Furthermore, a wearable device platform and a smart curtain actuated by the temperature of human skin and sunlight, respectively, are demonstrated as the first proof-of-concepts. These nature-powered actuators should realize a new class of ultimate low-power devices.


Assuntos
Resinas Acrílicas/química , Fontes de Energia Bioelétrica , Temperatura Corporal , Monitorização Ambulatorial/instrumentação , Luz Solar , Transdutores , Resinas Acrílicas/efeitos da radiação , Ar , Módulo de Elasticidade/efeitos da radiação , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Temperatura Alta , Humanos , Teste de Materiais , Resistência à Tração/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA