Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 253: 121268, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340700

RESUMO

The release of nanoplastics (NPs) into the environment is growing due to the extensive use of plastic products. Numerous studies have confirmed the negative effects of NPs on microorganisms, which poses uncertainties concerning their impact on nanofiltration (NF) membrane biofouling. This study investigated the initial cell adhesion process, NF membrane biofouling kinetic processes and bacterial responses of Pseudomonas aeruginosa (P. aeruginosa) exposed to varied NPs concentrations (0-50 mg·L-1). Transcriptome analysis demonstrated that low concentration of NPs (0.1 mg·L-1) promoted bacterial quorum sensing, energy metabolism, exopolysaccharide biosynthesis and bacterial secretion systems. Correspondingly, the polysaccharide content increased remarkably to 2.77 times the unexposed control, which served as a protective barrier for bacteria to avoid the impact of NPs-induced stress. Suppressed homologous recombination, microbial metabolic potentials and flagellar assembly were detected in bacteria exposed to a high concentration (50 mg·L-1) of NPs, mainly due to the triggered reactive oxygen species (ROS) generation, genomic DNA damage, and decreased energy production. Overall, enhanced formation of the extracellular polymeric substances (EPS) and aggravated membrane flux decline were observed when NPs interacted with the membrane surface by cell secretions (low NPs levels) or cell lysis (high NPs levels). These findings shed light on understanding the microbial metabolism mechanism and membrane biofouling propensity with NPs stress at both the molecular and gene levels.


Assuntos
Incrustação Biológica , Microplásticos , Membranas Artificiais , Percepção de Quorum , Bactérias , Biofilmes
2.
Water Res ; 253: 121358, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38402750

RESUMO

Membrane biofouling is a challenge to be solved for the stable operation of the seawater reverse osmosis (SWRO) membrane. This study explored the regulation mechanism of quorum sensing (QS) inhibition on microbial community composition and population-level behaviors in seawater desalination membrane biofouling. A novel antibiofouling SWRO membrane (MA_m) by incorporating one of quorum sensing inhibitors (QSIs), methyl anthranilate (MA) was prepared. It exhibited enhanced anti-biofouling performance than the exogenous addition of QSIs, showing long-term stability and alleviating 22 % decrease in membrane flux compared with the virgin membrane. The results observed that dominant bacteria Epsilon- and Gamma-proteobacteria (Shewanella, Olleya, Colwellia, and Arcobacter), which are significantly related to (P ≤ 0.01) the metabolic products (i.e., polysaccharides, proteins and eDNA), are reduced by over 80 % on the MA_m membrane. Additionally, the introduction of MA has a more significant impact on the QS signal-sensing pathway through binding to the active site of the transmembrane sensor receptor. It effectively reduces the abundance of genes encoding QS and extracellular polymeric substance (EPS) (exopolysaccharides (i.e., galE and nagB) and amino acids (i.e., ilvE, metH, phhA, and serB)) by up to 50 % and 30 %, respectively, resulting in a reduction of EPS by more than 50 %, thereby limiting the biofilm formation on the QSI-modified membrane. This study provides novel insights into the potential of QSIs to control consortial biofilm formation in practical SWRO applications.


Assuntos
Incrustação Biológica , Microbiota , Purificação da Água , Percepção de Quorum , Biofilmes , Matriz Extracelular de Substâncias Poliméricas , Osmose , Água do Mar/microbiologia , Membranas Artificiais , Purificação da Água/métodos
3.
Water Sci Technol ; 66(11): 2275-83, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23032754

RESUMO

Polyvinylchloride (PVC) ultrafiltration membranes were modified by blending with single-walled carbon nanotubes (SWCNTs) to improve the membranes' antibacterial property. Both modified and control samples were characterized for pore structure, roughness, hydrophilicity, permeability and mechanical properties. The membranes' antibacterial property was accessed with Escherichia coli as the model microbes by several methods. It was found that, after being blended with SWCNTs, the surface roughness of the modified membrane increased. Also, the surface hydrophilicity was improved. The membrane flux increased accordingly. But the membrane elongation decreased obviously with the SWCNTs addition. The modified membranes did not show the antibacterial property as expected in this research. There was no bacterial inhibition circle around the SWCNTs/PVC membrane coupons in the culture plates. There were no morphological differences of the cells on the control and the modified membranes. Hoechst 33342/propidium iodide stain test showed that there were more than 90% living bacterial cells which could grow on the SWCNTs/PVC membranes. This study suggests that the polymer wrapping may reduce the SWCNTs' antibacterial property greatly.


Assuntos
Antibacterianos , Membranas Artificiais , Nanotubos de Carbono , Cloreto de Polivinila , Benzimidazóis , Contagem de Colônia Microbiana , Escherichia coli/crescimento & desenvolvimento
4.
J Hazard Mater ; 436: 129098, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35569372

RESUMO

In this study, a novel adsorbent of graphene oxide (GO) incorporated ferrihydrite (FH) was fabricated and integrated with ultrafiltration (UF) to remove natural organic matter (NOM), the crucial cause of membrane fouling and major precursor of disinfection by-products (DBPs). Compared with FH and powdered activated carbon (PAC), GO/FH exhibited superior removal for high molecular weight (HMW) humic- and fulvic-like substances and low molecular weight (LMW) protein. The cake layer formed by GO/FH alleviated the deposition of NOM on membrane surface or inside membrane pores. Therefore, GO/FH reduced 89% and 95% total fouling resistance and irreversible membrane resistance, respectively, together with the lowest increment of transmembrane pressure. Pearson correlation analysis indicated that DOC, rather than specific ultraviolet absorbance (SUVA) and UV254, was significantly correlated to the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) when SUVA was below 4 L/mg-C.m. Whilst the HMW NOM (1-20 kDa) was highly related to dibromochloromethane (DBCM) (r = 0.98-1), the LMW fraction (< 1 kDa) was correlated with dibromochloromethane (TCAA) and dichloroacetic acid (DCAA) (r = 0.88-0.98). Inspiringly, GO/FH-UF reduced 90% of carbonaceous DBPs, the concentrations of which well met the WHO Guidelines. In summary, GO/FH-UF substantially alleviated membrane fouling and dramatically reduced DBP formation potential.


Assuntos
Ultrafiltração , Purificação da Água , Adsorção , Desinfecção , Compostos Férricos , Grafite , Membranas Artificiais
5.
Water Res ; 65: 177-85, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25113947

RESUMO

Dissolved organic matter (DOM) and phosphorus promote microbial regrowth in water distribution networks. Ferrihydrite (Fh) has a high adsorption affinity with DOM and phosphate. Hence, a lab-scale unit of the hybrid Fh-MF/UF membrane filtration system was used to evaluate membrane fouling and the removal efficiency of DOM and phosphate. Suwannee River natural organic matter (SRNOM) was used as a surrogate for DOM in natural water. The Fh-membrane system demonstrated removal rates of dissolved organic carbon (DOC), UV254 and phosphate up to 50%, 80% and 90%, respectively, at the Fh dose of 17.5 mg/L. The effect of phosphate on the removal of DOM was different without or with the addition of Fh; namely, phosphate increased the DOM removal without Fh by interacting with the UF membrane made of regenerated cellulose (RC), but phosphate decreased the DOM removal by Fh due to the strong affinity of phosphate with Fh. Size exclusion chromatography revealed that phosphate mainly competed against smaller DOM molecules for Fh adsorption sites. Although the addition of Fh caused only a moderate flux decline with the RC membranes, the deposition of positively charged Fh on the surface of a negatively charged high-flux membrane, i.e., polyethersulfone (PES), caused a rapid decline of the permeation flux.


Assuntos
Compostos Férricos/química , Filtração/métodos , Compostos Orgânicos/química , Fosfatos/química , Adsorção , Cromatografia em Gel , Membranas Artificiais , Polímeros/química , Sulfonas/química , Ultrafiltração , Purificação da Água/métodos , Abastecimento de Água
6.
Water Res ; 47(2): 747-57, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23218247

RESUMO

The goal of this study was to quantify and demonstrate the dynamic effects of hydraulic retention time (HRT), organic carbon and various components of extracellular polymeric substances (EPS) produced by microorganisms on the performance of submersed hollow-fiber microfiltration (MF) membrane in a hybrid powdered activated carbon (PAC)-MF membrane bioreactor (MBR). The reactors were operated continuously for 45 days to treat surface (river) water before and after pretreatment using a biofiltration unit. The real-time levels of organic carbon and the major components of EPS including five different carbohydrates (D(+) glucose and D(+) mannose, D(+) galactose, N-acetyl-D-galactosamine and D-galactose, oligosaccharides and L(-) fucose), proteins, and polysaccharides were quantified in the influent water, foulants, and in the bulk phases of different reactors. The presence of PAC extended the filtration cycle and enhanced the organic carbon adsorption and removal more than two fold. Biological filtration improved the filtrate quality and decreased membrane fouling. However, HRT influenced the length of the filtration cycle and had less effect on organic carbon and EPS component removal and/or biodegradation. The abundance of carbohydrates in the foulants on MF surfaces was more than 40 times higher than in the bulk phase, which demonstrates that the accumulation of carbohydrates on membrane surfaces contributed to the increase in transmembrane pressure significantly and PAC was not a potential adsorbent of carbohydrates. The abundance of N-acetyl-d-galactosamine and d-galactose was the highest in the foulants on membranes receiving biofilter-treated river water. Most of the biological fouling compounds were produced inside the reactors due to biodegradation. PAC inside the reactor enhanced the biodegradation of polysaccharides up to 97% and that of proteins by more than 95%. This real-time extensive and novel study demonstrates that the PAC-MF hybrid MBR is a sustainable technology for treating river water.


Assuntos
Incrustação Biológica , Reatores Biológicos , Água Doce/química , Membranas Artificiais , Filtros Microporos/microbiologia , Polímeros/química , Purificação da Água/instrumentação , Adsorção , Incrustação Biológica/prevenção & controle , Água Doce/microbiologia , Substâncias Húmicas/análise , Substâncias Húmicas/microbiologia , Hidrologia/métodos , Hidrólise , Japão , Cinética , Teste de Materiais , Polímeros/metabolismo , Polissacarídeos/análise , Polissacarídeos/química , Polissacarídeos/metabolismo , Pressão , Proteínas/análise , Proteínas/química , Proteínas/metabolismo , Rios , Propriedades de Superfície , Qualidade da Água
7.
Water Res ; 43(12): 3076-85, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19467688

RESUMO

There are concerns about black carbon (BC), due to its potential for sorption of toxic pollutants and inevitably entering drinking water sources. This study aimed to evaluate factors affecting BC aggregation and membrane fouling in the ultrafiltration of river water. Hydrophilic carbon black (CB) was selected as a surrogate of submicron BC in natural waters. Calcium, pH, and natural organic matter (NOM) were found to influence CB aggregation. Calcium induced interparticle interactions in a pH range of 4.3-7.7. In river water at 0.3mM Ca2+, CB remained as fine aggregates (<300 nm) that caused substantial filtration resistance. At 1.3mM Ca2+, CB size increased to 2.2-3.3 microm and membrane fouling was reduced. Interactions between particles and NOM enhanced organic rejection and eliminated irreversible membrane fouling. BC in water resources is a noxious substance, but it was easily aggregated in hard waters and could enhance NOM removal in the ultrafiltration process.


Assuntos
Carbono/química , Membranas Artificiais , Compostos Orgânicos/química , Ultrafiltração/métodos , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA