Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Gene Med ; 19(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28370835

RESUMO

BACKGROUND: Poor endosomal release is a major barrier of polyplex-mediated gene transfection. Antimicrobial peptides (AMPs) are commonly used to improve polyethylenimine (PEI)-mediated gene transfection by increasing endosomal release. In the present study, we designed novel pH-sensitive peptides that highly enhance transfection efficiency compared to their parent peptides. METHODS: Two analogues of melittin (Mel) and RV-23 (RV) were synthesized by replacing the positively-charged residues in their sequences with glutamic acid residues. The pH-sensitive lysis ability of the peptides, the effect of the peptides on physicochemical characteristics, the intracellular trafficking, the transfection efficiency, and the cytotoxicity of the polyplexes were determined. RESULTS: The acidic peptides showed pH-sensitive lytic activity. The hemolytic activity of acidic peptides at pH 5.0 was higher than that at pH 7.4. The incorporation of acidic peptides did not affect the DNA binding ability of PEI but affected the physicochemical characteristics of the PEI/DNA polyplexes, which may be beneficial for endosomal release and gene transfection. The incorporation of acidic peptides into PEI/DNA polyplexes enhanced the PEI-mediated transfection efficiency corresponding to up to 42-fold higher luciferase activity compared to that of PEI alone. CONCLUSIONS: The results of the present study indicate that replacement of positively-charged residues with glutamic acid residues in the AMP sequence yields pH-sensitive peptides, which enhance the transfection efficiency of PEI/DNA polyplexes in various cell lines.


Assuntos
Anti-Infecciosos/química , Peptídeos/química , Polietilenoimina/química , Anti-Infecciosos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , DNA/metabolismo , Endossomos/metabolismo , Técnicas de Transferência de Genes , Células HeLa , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Concentração de Íons de Hidrogênio , Meliteno/química , Peptídeos/administração & dosagem , Peptídeos/farmacologia , Transfecção/métodos
2.
J Gene Med ; 15(5): 205-14, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23636933

RESUMO

BACKGROUND: Previous studies have suggested that reducing the positive charge of melittin could increase endosomal release activity and improve branched polyethylenimine (BPEI)-mediated transfection. AR-23 is a melittin-related peptide from Rana tagoi, which shows 81% sequence identity with melittin but has less positively-charged residues than melittin. The present study aimed to investigate the mechanistic and functional aspects of the interaction of AR-23 with mammalian cells and thus improve BPEI-mediated gene transfection. METHODS: AR23 and two AR-23 analogs (AR-20 without positively-charged residues and AR-26 with the same positively-charged residues as melittin) were analyzed. Circular dichroism (CD) spectrometry was used to analyze the secondary structures of the peptides. Peptide-induced depolarization of cell membrane, the membrane-lytic activity of the peptides, and their potency with respect to enhancing the cellular uptake of calcein were evaluated. The physicochemical characters of complexes were measured and the effect of the peptides on BPEI-mediated transfection was determined. RESULTS: The CD spectra results indicated that a positive charge in AR-23 played a crucial role in maintaining the α-helical conformation, whereas an extra positive charge could not increase α-helical formation. AR-23 displayed a similar depolarization ability to melittin. However, AR-23 showed a lower membrane lytic activity under physiological conditions and a higher lytic activity at endosomal pH than melittin and AR-26, which possess more positive charges. Compared to melittin and AR-26, AR-23, with a higher endosomal escaping activity, resulted in a higher enhancement of BPEI-mediated gene transfection, as well as the maintainance of a lower cytotoxicity. CONCLUSIONS: We suggest that AR-23 may be considered as a potential enhancer for improving the transfection efficiency of cationic polymers.


Assuntos
Proteínas de Anfíbios/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Membrana Celular/metabolismo , Polietilenoimina/química , Proteínas/metabolismo , Transfecção/métodos , Proteínas de Anfíbios/química , Animais , Peptídeos Catiônicos Antimicrobianos/química , Dicroísmo Circular , Fluoresceínas/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Estrutura Secundária de Proteína , Proteínas/química
3.
J Gene Med ; 14(4): 241-50, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22328546

RESUMO

BACKGROUND: Melittin is a commonly used cell-penetrating peptide (CPP) for improving branched polyethylenimine (BPEI)-mediated gene transfection. However, its application is limited owing to the cytotoxicity generated by the lytic activity at neutral pH. In the present study, we report two truncated peptides from melittin and florae with improved transfection efficiency. METHODS: Two truncated peptides consisting of 1-20 residues of melittin (MT20) and florae (FL20) were synthesized. Circular dichroism (CD) spectrometry was used to analyze the secondary structures of the peptides. The membrane-lytic activity of the peptides and their potency in enhancing cellular uptake of calcein were evaluated. The peptides and BPEI mixtures were mixed with plasmid DNA to prepare peptide/BPEI/DNA complexes. The physicochemical characters of complexes were measured and the effect of the peptides on BPEI-mediated transfection was determined. RESULTS: CD analysis and structure observation showed that the truncated peptides have α-helical conformation, which was necessary for penetrating activity. The truncated peptides exhibited several advantages than their parent peptides: (i) they showed higher hemolytic potency in acidic pH but lower lytic activity than their parent peptides in neutral pH; (ii) enhanced calcein efficiently release from both early and late endosome; (iii) they did not affect the DNA-binding affinity of BPEI and the physicochemical characteristics of BPEI/DNA complexes. Moreover, the peptides could increase BPEI-mediated transfection efficiency in different cell lines (293FT, B16F10 and CHO-K1) by simply mixing with BPEI, without causing cytotoxicity. CONCLUSIONS: The results obtained in the present study indicate that the truncated peptides with higher endosomal disrupting activity were better enhancers for increasing transfection efficiency.


Assuntos
Peptídeos Penetradores de Células/química , Endossomos/metabolismo , Meliteno/química , Polietilenoimina/química , Transfecção/métodos , Animais , Células CHO , Linhagem Celular , Dicroísmo Circular , Cricetinae , DNA/administração & dosagem , Portadores de Fármacos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio
4.
Biomacromolecules ; 12(1): 66-74, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-21126012

RESUMO

Linear reduction-degradable cationic polymers with different secondary amine densities (S2 and S3) and their nonreducible counterparts (C2 and C3) were synthesized by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) step-growth polymerization of the dialkyne-oligoamine monomers and the diazide monomers. These polymers were studied with a goal of developing a set of new gene carriers. The buffering capacity and DNA binding ability of these polymers were evaluated by acid-base titration, gel retardation, and ethidium bromide (EB) exclusion assay. The polymers with lower amine density exhibit a weaker DNA-binding ability but a stronger buffering capacity in the range of pH 5.1 and 7.4. Particle size and zeta-potential measurements demonstrate that the polymers with higher amine density condense pDNA to form polyplexes with smaller sizes, while the disulfide bond in the backbone shows a negative effect on the condensing capability of the polymers, resulting in the formation of polyplexes with large size and nearly neutral surface. The reduction-sensitive polyplexes formed by polymer S2 or S3 can be disrupted by dithiothreitol (DTT) to release free DNA, which has been proven by the combination of gel retardation, EB exclusion assay, particles sizing, and zeta potential measurements. Cell viability measurements by MTT assay demonstrate that the reduction-degradable polymers (S2 and S3) have little cytotoxicity while the nonreducible polymers (C2 and C3) show obvious cytotoxicity, in particular, at high N/P ratios. In vitro transfection efficiencies of these polymers were evaluated using EGFP and luciferase plasmids as the reporter genes. Polymers S3 and S2 show much higher efficiencies than the nonreducible polymers C3 and C2 in the absence of 10% serum; unexpectedly, the lowest transfection efficiency has been observed for polymer S3 in the presence of serum.


Assuntos
DNA/farmacologia , Técnicas de Transferência de Genes , Plasmídeos/farmacologia , Polímeros , Animais , Células COS , Chlorocebus aethiops , DNA/química , Humanos , Concentração de Íons de Hidrogênio , Oxirredução , Tamanho da Partícula , Plasmídeos/química , Polímeros/síntese química , Polímeros/química , Polímeros/farmacologia
5.
Macromol Biosci ; 11(10): 1393-406, 2011 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-21830296

RESUMO

A family of thermoresponsive cationic copolymers (TCPs) that contain branched PEI 25 K as the cationic segment and poly(MEO(2)MA-co-OEGMA(475)) as the thermosensitive block (TP) is prepared. The DNA binding capability, physicochemical properties, and biological performance of the TCPs are studied. All of these TCPs can condense DNA to form polyplexes with diameters of 150-300 nm and zeta potentials of 7-32 mV at N/P ratios between 12 and 36. The length of TP block is a key factor for shielding the positive surface charge of the polyplexes and protecting them against protein adsorption. TCPs with a higher TP content have a lower cytotoxicity while the best transfection performance is achieved by the TCPs with longest TP length, reaching a level of the intact PEI 25 K in the presence of serum.


Assuntos
Técnicas de Transferência de Genes , Polietilenoglicóis/química , Polietilenoimina/análogos & derivados , Ácidos Polimetacrílicos/química , Temperatura , Animais , Células COS , Cátions , Morte Celular , Sobrevivência Celular , Chlorocebus aethiops , DNA/metabolismo , Eletroforese em Gel de Ágar , Etídio/metabolismo , Luciferases/metabolismo , Espectroscopia de Ressonância Magnética , Tamanho da Partícula , Polietilenoglicóis/síntese química , Polietilenoimina/síntese química , Polietilenoimina/química , Ácidos Polimetacrílicos/síntese química , Espectroscopia de Infravermelho com Transformada de Fourier , Transfecção
6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 14(5): 1020-3, 2006 Oct.
Artigo em Zh | MEDLINE | ID: mdl-17096911

RESUMO

The objective of study was to investigate the Rh antigen stability of mPEG-modified RBC. RBC membrane protein SDS-PAGE technology was used to analyze the combination of the mPEG modified RBC membrane protein with mPEG molecules; the RBC ghost coagulation test and 4 degrees C CPD-preserved modified RBC mixed with matched blood were used to observe the stability of RBC Rh antigen camouflaged by mPEG. The results showed that the blood groups of stored mPEG-modified RBC were kept consistency before or after simulating transfusion, i.e. mixture of modified RBC with matched bloods, while the plasma hemoglobin after simulating transfusion was not only within the normal range during the storage, but also less than that before simulating transfusion even after incubation at 37 degrees C. The electrophoresis pattern stained with iodine and Coomassie blue displayed the bands of mPEG combined with RBC membrane protein and the slow mobility of membrane protein. The hemagglutination of PEGylation RBC ghosts did not take place and mPEG still covered the antigen. In conclusion, mPEG-SPA can bind the erythrocyte with its extracted membrane protein in both ghosts and living erythrocytes.


Assuntos
Eritrócitos/imunologia , Polietilenoglicóis/farmacologia , Sistema do Grupo Sanguíneo Rh-Hr/imunologia , Membrana Eritrocítica/imunologia , Humanos , Isoanticorpos/sangue , Reação Transfusional
7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 14(4): 816-21, 2006 Aug.
Artigo em Zh | MEDLINE | ID: mdl-16928329

RESUMO

This study was aimed to investigate the survival rate and difference of transfused modified and unmodified RBC at 24 hours. The modified and unmodified RBC from mice, monkey, pig and human were labeled by using FITC, then these blood RBCs were transfused to homogeneous and heterogeneous animals. The result showed that 24 hour survival rate of unmodified mice RBC transfused to mice was 74%, while survival rate of 2.0 mmol/L mPEG-SPA modified mice RBC transfused to mice was 45%, difference between them was significant. The 24 hour survived rate of unmodified human RBC transfused to mice was 8%, while 24 hours survival rate of 2.0 mmol/L mPEG-SPA modified human RBC transfused to mice was 5% without statistical difference. The 24 hour survived rate of homogeneous transfusion of modified monkey RBC was 90%, while survival rate of modified human and pig RBC was zero on 24 hours after transfusion to monkey. It is concluded that RBC labeling methods and mice species are unrelated to 24 hours survival rate, but mPEG variety and concentration are related to mouse RBC life-span. It is incredible to use mouse RBC homogeneous transfusion result instead of human RBC to evaluate longevity and safety of modified human RBC. But modified human RBC transfused to mice can be a model to evaluate longevity of modified human RBC. It is very difficult to get the result about modified RBC life span by RBC transfusion among great heterogeneous mammal animals. So evaluation in large mammal animal models needs to be further studied.


Assuntos
Transfusão de Eritrócitos , Polietilenoglicóis/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Transfusão de Eritrócitos/métodos , Humanos , Macaca mulatta , Masculino , Camundongos , Suínos
8.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 14(1): 150-5, 2006 Feb.
Artigo em Zh | MEDLINE | ID: mdl-16584613

RESUMO

In order to study the possibility of xenotransfusion from porcine red blood cell (pRBC) to primate, the antigens on pRBC surface were modified to make it more compatible to primate sera. Porcine RBCs were subjected to both enzymatic removal of membrane alpha-Gal antigens with recombinant alpha-galactosidase (AGL) and covalent attachment of succinimid propionate-linked methoxypolyethyleneglycol (mPEG-SPA) to camouflage non-alphaGal antigens. The effects of double modifications were determinated by hemagglutination and clinical cross-match testing with rhesus sera. In vivo clearance rates and safety of modified pRBCs were measured after it was transfused into Rhesus monkey with or without immunosuppressant treatment. The validity of pRBC was detected in exsanguine Rhesus monkey model. The results showed that AGL could effectively remove alpha-Gal xenoantigens on pRBC membrane and reduce hemagglutination. The combination of mPEG modification with AGL treatment could significantly increased compatibility between pRBCs and Rhesus monkey sera. Modified pRBCs were detectable in Rhesus monkey blood at 12 hours after transfusion, and their survival time was 40 hours in the immunosuppressant-treated Rhesus monkey. In vivo survival rates of pRBCs were 38% in exsanguine Rhesus monkey at 8 hours after transfusion, and during that time, the hemoglobin and hematocrit of Rhesus monkey were maintained at the same level as before it lost blood. It is concluded that the modified pRBC can be safely transfused into Rhesus monkey and relieve the anemic symptom exsanguine Rhesus monkey. It suggested that pRBC can be hopefully used as a blood substitute for primate and human in the future.


Assuntos
Transfusão de Eritrócitos/métodos , Eritrócitos/imunologia , Macaca mulatta/imunologia , Suínos/sangue , Animais , Eritrócitos/efeitos dos fármacos , Testes de Hemaglutinação , Polietilenoglicóis/farmacologia , Transplante Heterólogo/métodos , alfa-Galactosidase/farmacologia
9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 11(6): 654-8, 2003 Dec.
Artigo em Zh | MEDLINE | ID: mdl-14706154

RESUMO

Rh is a very important blood group like ABO blood system in transfusion medicine. It causes severe transfusion reaction and hemolytic disease of the newborn (HDN) if RhD blood group does not match between the donor and the recipient. The population of RhD negative is only about 0.2% - 0.5% in Chinese. Conversion of RhD positive RBCs to RhD negative is very important in clinical transfusion. This study was to try to modify RhD antigen located on the surface of A, B, O and AB red blood cells in order to convert RhD positive to RhD negative by the modification of four kinds of methoxypolyethylene glycol (mPEG) derivatives and to observe the effect of mPEG modification on cell morphology, structure and function. The result demonstrated that modification efficiency of mPEG-BTC (mPEG-benzotriazole carbonate) was better than other three kinds of mPEG derivatives. It could camouflage RhD antigen efficiently when the concentration reached to 1 mmol/L. The result also showed that there were no harmful effects of mPEG modification on cell morphology, osmotic fragility, hemolysis, AchE, cholesterol, ATP, 2,3-DPG and deformability. It is suggested that success in converting RhD positive RBCs to RhD negative was preliminarily achieved.


Assuntos
Eritrócitos/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Sistema do Grupo Sanguíneo Rh-Hr/imunologia , Eritrócitos/imunologia , Eritrócitos/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA