Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 49(24): 14213-20, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26580982

RESUMO

Hollow fiber supported liquid membrane (HFSLM) extraction was coupled with ICP-MS for speciation analysis of labile Ag(I) and total Ag(I) in dispersions of silver nanoparticles (AgNPs) and environmental waters. Ag(I) in aqueous samples was extracted into the HFSLM of 5%(m/v) tri-n-octylphosphine oxide in n-undecane, and stripped in the acceptor of 10 mM Na2S2O3 and 1 mM Cu(NO3)2 prepared in 5 mM NaH2PO4-Na2HPO4 buffer (pH 7.5). Negligible depletion and exhaustive extraction were conducted under static and 250 rpm shaking to extract the labile Ag(I) and total Ag(I), respectively. The extraction equilibration was reached in 8 h for both extraction modes. The extraction efficiency and detection limit were (2.97 ± 0.25)% and 0.1 µg/L for labile Ag(I), and (82.3 ± 2.0)% and 0.5 µg/L for total Ag(I) detection, respectively. The proposed method was applied to determine labile Ag(I) and total Ag(I) in different sized AgNP dispersions and real environmental waters, with spiked recoveries of total Ag(I) in the range of 74.0-98.1%. With the capability of distinguishing labile and total Ag(I), our method offers a new approach for evaluating the bioavailability and understanding the fate and toxicity of AgNPs in aquatic systems.


Assuntos
Extração Líquido-Líquido/métodos , Nanopartículas Metálicas/análise , Prata/análise , Poluentes Químicos da Água/análise , China , Limite de Detecção , Extração Líquido-Líquido/instrumentação , Espectrometria de Massas/métodos , Membranas Artificiais , Nanopartículas Metálicas/química , Compostos Organofosforados/química , Tamanho da Partícula
2.
Anal Chem ; 83(17): 6875-82, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21797201

RESUMO

The rapid growth in commercial use of silver nanoparticles (AgNPs) will inevitably increase silver exposure in the environment and the general population. As the fate and toxic effects of AgNPs is related to the Ag(+) released from AgNPs and the transformation of Ag(+) into AgNPs, it is of great importance to develop methods for speciation analysis of AgNPs and Ag(+). This study reports the use of Triton X-114-based cloud point extraction as an efficient separation approach for the speciation analysis of AgNPs and Ag(+) in antibacterial products and environmental waters. AgNPs were quantified by determining the Ag content in the Triton X-114-rich phase with inductively coupled plasma mass spectrometry (ICPMS) after microwave digestion. The concentration of total Ag(+), which consists of the AgNP adsorbed, the matrix associated, and the freely dissolved, was obtained by subtracting the AgNP content from the total silver content that was determined by ICPMS after digestion. The limits of quantification (S/N = 10) for antibacterial products were 0.4 µg/kg and 0.2 µg/kg for AgNPs and total silver, respectively. The reliable quantification limit was 3 µg/kg for total Ag(+). The presence of Ag(+) at concentrations up to 2-fold that of AgNPs caused no effects on the determination of AgNPs. In the cloud point extraction of AgNPs in antibacterial products, the spiked recoveries of AgNPs were in the range of 71.7-103% while the extraction efficiencies of Ag(+) were in the range of 1.2-10%. The possible coextracted other silver containing nanoparticles in the cloud point extraction of AgNPs were distinguished by transmission electron microscopy (TEM), scanning electron microscopy (SEM)- energy dispersive spectroscopy (EDS), and UV-vis spectrum. Real sample analysis indicated that even though the manufacturers claimed nanosilver products, AgNPs were detected only in three of the six tested antibacterial products.


Assuntos
Antibacterianos/química , Espectrometria de Massas/métodos , Nanopartículas Metálicas/análise , Prata/análise , Poluentes Químicos da Água/análise , Antibacterianos/isolamento & purificação , Íons/química , Íons/isolamento & purificação , Nanopartículas Metálicas/ultraestrutura , Micro-Ondas , Octoxinol , Polietilenoglicóis/química , Prata/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA