Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Proteome Res ; 23(1): 3-15, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38018860

RESUMO

The purpose of this study was to determine potential metabolic biomarkers and therapeutic drugs in the gingival tissue of individuals with periodontitis. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) were used to analyze the gingival tissue samples from 20 patients with severe periodontitis and 20 healthy controls. Differential metabolites were identified using variable important in projection (VIP) values from the orthogonal partial least squares discrimination analysis (OPLS-DA) model and then verified for significance between groups using a two-tailed Student's t test. In total, 65 metabolites were enriched in 33 metabolic pathways, with 40 showing a significant increase and 25 expressing a significant decrease. In addition, it was found that patients with severe periodontitis have abnormalities in metabolic pathways, such as glucose metabolism, purine metabolism, amino acid metabolism, and so on. Furthermore, based on a multidimensional analysis, 12 different metabolites may be the potential biomarkers of severe periodontitis. The experiment's raw data have been uploaded to the MetaboLights database, and the project number is MTBLS8357. Moreover, osteogenesis differentiation characteristics were detected in the selected metabolites. The findings may provide a basis for the study of diagnostic biomarkers and therapeutic metabolites in severe periodontitis.


Assuntos
Metabolômica , Periodontite , Humanos , Metabolômica/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metaboloma , Biomarcadores
2.
Ecotoxicol Environ Saf ; 275: 116252, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547731

RESUMO

BACKGROUND: Phthalates are widely used plasticizers, which were identified as risk factors in the development of many human diseases. However, the effects of phthalates in the periodontitis are unknown. We aimed to investigated the relationship of periodontitis and phthalate exposure as well as the underlying mechanisms. MATERIALS AND METHODS: Univariate and multivariate logistic regressions were employed to evaluate the association between phthalate metabolites and periodontitis. The generalized additive model and piecewise logistic regression were conducted to investigate the dose-response relationship. Cell and animal models were used to explore the role and mechanism of DEHP in the development of periodontitis. Transcriptome sequencing, bioinformatics analysis, western blot, immunofluorescence and mice model of periodontitis were also employed. RESULTS: MEHP (OR 1.14, 95% CI 1.05-1.24), MCPP (OR 1.08, 95% CI 1.00-1.17), MEHHP (OR 1.18, 95% CI 1.08-1.29), MEOHP (OR 1.18, 95% CI 1.07-1.29), MiBP (OR 1.15, 95% CI 1.04-1.28), and MECPP (OR 1.20, 95% CI 1.09-1.32) were independent risk factors. And MEHHP, the metabolite of DEHP, showed the relative most important effects on periodontitis with the highest weight (0.34) among all risk factors assessed. And the increase of inflammation and the activation of NFκB pathway in the periodontitis model mice and cells were observed. CONCLUSION: Exposure to multiple phthalates was positively associated with periodontitis in US adults between 30 and 80 years old. And DEHP aggravated inflammation in periodontitis by activating NFκB pathway.


Assuntos
Dietilexilftalato , Poluentes Ambientais , Periodontite , Ácidos Ftálicos , Adulto , Humanos , Animais , Camundongos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Exposição Ambiental/análise , Dietilexilftalato/metabolismo , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/metabolismo , Periodontite/induzido quimicamente , Inflamação , Poluentes Ambientais/análise
3.
Small ; 19(42): e2301638, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37345962

RESUMO

Developing composite materials with optimized mechanics, degradation, and bioactivity for bone regeneration has long been a crucial mission. Herein, a multifunctional Mg/Poly-l-lactic acid (Mg/PLLA) composite membrane based on the "materials plain" concept through the accumulative rolling (AR) method is proposed. Results show that at a rolling ratio of 75%, the comprehensive mechanical properties of the membrane in the rolling direction are self-reinforced significantly (elongation at break ≈53.2%, tensile strength ≈104.0 MPa, Young's modulus ≈2.13 GPa). This enhancement is attributed to the directional arrangement and increased crystallization of PLLA molecular chains, as demonstrated by SAXS and DSC results. Furthermore, the AR composite membrane presents a lamellar heterostructure, which not only avoids the accumulation of Mg microparticles (MgMPs) but also regulates the degradation rate. Through the contribution of bioactive MgMPs and their photothermal effect synergistically, the membrane effectively eliminates bacterial infection and accelerates vascularized bone regeneration both in vitro and in vivo. Notably, the membrane exhibits outstanding rat skull bone regeneration performance in only 4 weeks, surpassing most literature reports. In short, this work develops a composite membrane with a "one stone, four birds" effect, opening an efficient avenue toward high-performance orthopedic materials.


Assuntos
Regeneração Óssea , Poliésteres , Ratos , Animais , Espalhamento a Baixo Ângulo , Difração de Raios X , Poliésteres/química , Bactérias
4.
Clin Oral Implants Res ; 34(7): 707-718, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37167364

RESUMO

OBJECTIVES: This clinical study aimed to assess the accuracy of implant positions using a robotic system in partially edentulous patients. MATERIALS AND METHODS: Twenty-eight partially edentulous patients received 31 implants using the robotic system. Deviations between the planned and placed implants were calculated after surgery. The deviations were compared with objective performance goals (OPGs) from reported studies of fully guided static computer-assisted implant surgery (CAIS) and dynamic CAIS. A multiple linear regression analysis was performed to investigate the possible effects of the type and side of the arch, implant location, and implant dimensions on the deviations. RESULTS: The evaluation of 31 implants resulted in a mean angle deviation of 2.81 ± 1.13° (95% confidence interval (CI): 2.40-3.23°), while the 3D deviations at the implant shoulder and apex were 0.53 ± 0.23 mm (95% CI 0.45-0.62 mm) and 0.53 ± 0.24 mm (95% CI 0.44-0.61 mm), respectively. The upper limits of the 95% CI of 3D deviations were lower than those of the corresponding OPGs; however, the angle deviation was similar to that of the OPG. No statistically significant differences were found for the type and side of the arch, implant location, and implant dimensions to the deviations (p > .05). CONCLUSIONS: The robotic system appears to achieve higher accuracy in implant positions than static and dynamic CAIS in partially edentulous patients (Chinese Clinical Trial Registry ChiCTR2300067587).


Assuntos
Implantes Dentários , Boca Edêntula , Procedimentos Cirúrgicos Robóticos , Cirurgia Assistida por Computador , Humanos , Implantação Dentária Endóssea/métodos , Estudos Prospectivos , Tomografia Computadorizada de Feixe Cônico , Desenho Assistido por Computador , Imageamento Tridimensional , Planejamento de Assistência ao Paciente , Boca Edêntula/cirurgia , Cirurgia Assistida por Computador/métodos
5.
BMC Oral Health ; 22(1): 303, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869442

RESUMO

BACKGROUND: Canine relationship is a key reference identifying anterior malocclusion and an important implication for evaluating preimplantation bone morphology at maxillary esthetic zone. This study aimed to compare the differences of maxillary central incisor-related measurements (alveolar bone thickness and tooth sagittal angulation) between Class I and Class III canine relationship and further explore the risk factors for immediate implant placement in the anterior maxilla based on cone beam computed tomography (CBCT) data. METHODS: CBCT digital imaging and communications in medicine (DICOM) files of 107 patients (54 with Class I canine relationship and 53 with Class III canine relationship) were collected and the alveolar bone thickness at mid-root (mid-root buccal thickness/MBT; palatal/MPT), apical regions (apical buccal thickness/ABT; palatal/APT) and sagittal angulation (SA) of the maxillary central incisor at the examined side were measured on the mid-sagittal observation plane. Descriptive statistical analysis and frequency distributions of the measurements based on Class I or Class III canine relationship were established. Statistical analyses were performed using Fisher's exact test, independent samples t test and Pearson correlation test with the significance level set at p < 0.05. RESULTS: The frequency distributions of maxillary central incisors' MPT, ABT, APT and SA showed significant differences between Class I and Class III canine relationships (p = 0.030, 0.024, 0.000 and 0.000, respectively). MPT (2.48 ± 0.88 mm vs. 3.01 ± 1.04 mm, p = 0.005), APT (6.79 ± 1.65 mm vs. 8.47 ± 1.93 mm, p = 0.000) and SA (12.23 ± 5.62° vs. 16.42 ± 4.49°, p = 0.000) were significantly smaller in patients with Class III canine relationship. Moreover, SA showed a strong positive correlation with APT (R = 0.723, p = 0.000) and a moderate negative correlation with ABT (R = - 0.554, p = 0.000). CONCLUSIONS: In populations with Class III canine relationship, maxillary central incisors were significantly more labially inclined and have a thinner palatal bone plate at the apex compared with Class I relationship. Clinicians should avoid palatal perforation during immediate implantation at sites of originally protrusive maxillary incisors.


Assuntos
Incisivo , Tomografia Computadorizada de Feixe Cônico Espiral , Processo Alveolar/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico/métodos , Incisivo/anatomia & histologia , Incisivo/diagnóstico por imagem , Maxila/anatomia & histologia , Maxila/diagnóstico por imagem , Estudos Retrospectivos
6.
J Prosthet Dent ; 123(5): 655-660, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31753462

RESUMO

This clinical report describes interdisciplinary treatments for a 17-year-old girl with ectodermal dysplasia. The treatment was initiated with orthodontic therapy. After the remaining primary teeth had been extracted, 6 implants were placed in the maxilla with bilateral sinus floor elevations, and 6 implants were placed in the mandible. Immediate restorations were provided. Definitive restorations included screw-retained partial dental prostheses and ceramic crowns.


Assuntos
Implantes Dentários , Displasia Ectodérmica , Levantamento do Assoalho do Seio Maxilar , Adolescente , Coroas , Planejamento de Prótese Dentária , Prótese Dentária Fixada por Implante , Falha de Restauração Dentária , Feminino , Seguimentos , Humanos , Resultado do Tratamento
7.
Connect Tissue Res ; 59(2): 108-119, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28301220

RESUMO

OVERVIEW: Periostin (POSTN) is critical to bone and dental tissue morphogenesis, postnatal development, and maintenance; however, its roles in tissue repair and regeneration mediated by human periodontal ligament mesenchymal stem cells (PDLSCs) remain unclear. The present study was designed to evaluate the effects of POSTN on hPDLSCs in vitro. MATERIALS AND METHODS: hPDLSCs were isolated and characterized by their expression of the cell surface markers CD44, CD90, CD105, CD34, and CD45. Next, 100 ng/mL recombinant human POSTN protein (rhPOSTN) was used to stimulate the hPDLSCs. Lentiviral POSTN shRNA was used to knockdown POSTN. The cell counting kit-8 (CCK8) and scratch assay were used to analyze cell proliferation and migration, respectively. Osteogenic differentiation was investigated using an alkaline phosphatase (ALP) activity assay, alizarin staining, and quantitative calcium analysis and related genes/protein expression assays. RESULTS: Isolated hPDLSCs were positive for CD44, CD90, and CD105 and negative for CD34 and CD45. In addition, 100 ng/mL rhPOSTN significantly accelerated scratch closure, and POSTN-knockdown cells presented slower closure at 24 h and 48 h. Furthermore, the integrin inhibitor Cilengitide depressed the scratch closure that was enhanced by POSTN at 24 h. The CCK8 assay showed that 100 ng/mL rhPOSTN promoted hPDLSC proliferation. Moreover, 100 ng/mL rhPOSTN increased the expression of RUNX2, OSX, OPN, OCN, and VEGF and enhanced ALP activity and mineralization. POSTN silencing decreased the expression of RUNX2, OSX, OPN, OCN, and VEGF and inhibited ALP activity and mineralization. CONCLUSIONS: POSTN accelerated the migration, proliferation, and osteogenic differentiation of hPDLSCs.


Assuntos
Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células-Tronco Mesenquimais/metabolismo , Ligamento Periodontal/metabolismo , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Moléculas de Adesão Celular/genética , Células Cultivadas , Feminino , Inativação Gênica , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Ligamento Periodontal/citologia
8.
J Appl Toxicol ; 38(6): 824-833, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29377205

RESUMO

Titanium (Ti) and its corresponding alloys have been widely applied in dental and orthopedic implants. Owing to abrasion and corrosion of implants in the unfavorable electrolytic aqueous environment of the host body, Ti ions could be released from implants and accumulated in local tissues. Recent studies have found that excessive Ti ions were toxic to osteoblasts in adjacent bone tissues and subsequently influenced long-term effects on implant prostheses. However, the potential molecular mechanisms underlying the damage to osteoblasts induced by Ti ions remained unclear. Hippo signaling has been confirmed to be involved in organ size and tissue regeneration in many organs, while its roles in osteoblasts differentiation and bone repair remained elusive. Therefore, we hypothesize that YAP, a regulator of Hippo pathway, inhibited osteoblast growth, skeletal development and bone repair, as well as excessive Ti ions promoted the progression of YAP activation. This study aimed to explore the role of Hippo/YAP signaling pathway in the biotoxicity effect of Ti ions on osteoblast behaviors. Here, we confirmed that 10 ppm Ti ions, a minimum concentration gradient previously reported that was capable of suppressing osteoblasts growth, induced nuclear expression of YAP in osteoblasts in our study. Furthermore, 10 ppm Ti ion-induced YAP activation was found to downregulate osteogenic differentiation of MC3T3-E1 cells. Most importantly, the hypothesis we proposed that knockdown of YAP did reverse the inhibitory effect of 10 ppm Ti ions on osteogenesis has been verified. Taken together, our work provides insights into the mechanism of which YAP is involved in regulating osteoblast behaviors under the effect of Ti ions, which may help to develop therapeutic applications for Ti implant failures and peri-implantitis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Osteoblastos/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Titânio/toxicidade , Células 3T3 , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica , Via de Sinalização Hippo , Camundongos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Fosforilação , Proteínas de Sinalização YAP
9.
J Prosthet Dent ; 119(4): 511-515, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28781070

RESUMO

The technique of immediate implantation has been widely used to reduce treatment time and bone loss after extraction. However, immediate implant placement in infected extraction sockets is generally contraindicated. This clinical report describes a treatment protocol for immediate implantation after the extraction of teeth with generalized chronic periodontitis. The technique used for the oral rehabilitation used computer-assisted design and computer-assisted manufacturing (CAD-CAM) titanium frameworks and cemented zirconia crowns. The titanium frameworks overcame suboptimal implant position and the cemented crowns provided excellent function and esthetics despite the locations of screw-access openings. No clinical complications occurred during a 13-month follow-up.


Assuntos
Periodontite Crônica/terapia , Desenho Assistido por Computador , Coroas , Boca Edêntula/reabilitação , Boca Edêntula/cirurgia , Prótese Dentária Fixada por Implante , Humanos , Masculino , Pessoa de Meia-Idade , Titânio , Extração Dentária , Zircônio
10.
Cell Tissue Res ; 356(1): 171-82, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24562313

RESUMO

Dentin, the predominant mineralized tissue of the tooth, comprises an extracellular matrix of collagen and a heterogeneous mixture of non-collagenous components, many of which have cellular signaling properties. These properties may be important in signaling stem cell involvement in tissue regeneration following injury and the present study investigates their morphogenic effects on differentiation of Bone Marrow Stromal Stem Cells (BMMSCs) in vitro. Non-collagenous dentin matrix proteins (DMPs) were isolated from healthy human teeth and their effects on BMMSCs behavior examined during in vitro culture. In vitro, DMPs enhanced alkaline phosphatase activity and mineralization in BMMSCs cultures as well as increasing the expression of dentinogenic and osteogenic differentiation markers (including runt-related transcription factor 2, osterix, bone sialoprotein, dentin sialophosphoprotein and osteocalcin) at both transcript and protein levels, with 10 µg/mL DMPs being the optimal stimulatory concentration. Expression of phosphor-ERK/phosphor-P38 in BMMSCs was up-regulated by DMPs and, in the presence of the ERK1/2- and p38-specific inhibitors, the differentiation of BMMSCs was inhibited. These data indicate that DMPs promote the dentinogenic/osteogenic differentiation of BMMSCs via the ERK/p38 MAPK pathways.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proteínas da Matriz Extracelular/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Ativação Enzimática , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley
11.
J Prosthet Dent ; 112(5): 1111-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24882594

RESUMO

STATEMENT OF PROBLEM: It is unknown whether dental implant systems with a platform-switched configuration have better periimplant bone stress distribution and lead to less periimplant bone level changes. PURPOSE: The purpose of this study was to quantitatively investigate interfacial stress and stress distribution in implant bone in 2 implant abutment designs (platform-switched design and conventional diameter matching) by using a nonlinear finite element analysis method. MATERIAL AND METHODS: A finite element simulation study was applied to 2 commercially available dental implant systems: the Ankylos implant system with a reduced-diameter abutment (platform-switched implant) and the Anthogyr implant system with an abutment of the same diameter (regular platform implant). These 2 dental implant systems were positioned in a bone block, which was constructed based on a cross-sectional image of a human mandible in the molar region. In simulation, a single vertical load of 50 N, 100 N, or 150 N and horizontal loads of 50 N and 100 N were applied to the occlusal surface of the abutment. RESULTS: The finite element analysis found that the Ankylos implant system has a higher maximum von Mises stress in the implant abutment connection section and a lower maximum von Mises stress in the periimplant bone. The opposite results were found in the Anthogyr implant system. CONCLUSIONS: Lower stress levels in the periimplant bone with a more uniform stress distribution were found for the Ankylos implant system with a platform-switched configuration. Although relatively higher stress was found in the abutment, premature implant failure is not anticipated because of the high strength of titanium alloy.


Assuntos
Interface Osso-Implante/fisiologia , Projeto do Implante Dentário-Pivô , Implantes Dentários , Análise de Elementos Finitos , Dinâmica não Linear , Fenômenos Biomecânicos , Força de Mordida , Simulação por Computador , Desenho Assistido por Computador , Ligas Dentárias/química , Arco Dental/fisiologia , Materiais Dentários/química , Humanos , Imageamento Tridimensional/métodos , Mandíbula/fisiologia , Modelos Biológicos , Imagem Óptica/métodos , Estresse Mecânico , Propriedades de Superfície , Titânio/química
12.
ACS Biomater Sci Eng ; 10(1): 537-549, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065085

RESUMO

Commercially available guided bone regeneration (GBR) membranes often exhibit limited mechanical properties or bioactivity, leading to poor performance in repairing bone defects. To surmount this limitation, we developed a Janus structural composite membrane (Mg-MgO/PCL) reinforced by dual Mg (Mg sheets and MgO NPs) by using a combined processing technique involving casting and electrospinning. Results showed that the addition of Mg sheets and MgO NPs enhanced the mechanical properties of the composite membrane for osteogenic space maintenance, specifically tensile strength (from 10.2 ± 1.2 to 50.3 ± 4.5 MPa) and compression force (from 0 to 0.94 ± 0.09 N mm-1), through Mg sheet reinforcement and improved crystallization. The dense cast side of the Janus structure membrane displayed better fibroblast barrier capacity than a single fiber structure; meanwhile, the PCL matrix protected the Mg sheet from severe corrosion due to predeformation. The porous microfibers side supported preosteoblast cell adhesion, enhanced osteogenesis, and angiogenesis in vitro, through the biomimetic extracellular matrix and sustainable Mg2+ release. Furthermore, the Mg-MgO/PCL membrane incorporating 2 wt % MgO NPs exhibited remarkable antimicrobial properties, inducing over 88.75% apoptosis in Staphylococcus aureus. An in vivo experiment using the rat skull defect model (Φ = 5 mm) confirmed that the Mg-MgO/PCL membrane significantly improved new bone formation postsurgery. Collectively, our investigation provides valuable insights into the design of multifunctional membranes for clinical oral GBR application.


Assuntos
Óxido de Magnésio , Poliésteres , Ratos , Animais , Óxido de Magnésio/farmacologia , Poliésteres/farmacologia , Poliésteres/química , Regeneração Óssea , Osteogênese , Adesão Celular
13.
ACS Biomater Sci Eng ; 10(2): 1062-1076, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38245905

RESUMO

Magnesium is a revolutionary biomaterial for orthopedic implants, owing to its eminent mechanical properties and biocompatibility. However, its uncontrolled degradation rate remains a severe challenge for its potential applications. In this study, we developed a self-healing micro arc oxidation (MAO) and dicalcium phosphate dihydrate (DCPD) double-passivated coating on a magnesium membrane (Mg-MAO/DCPD) and investigated its potential for bone-defect healing. The Mg-MAO/DCPD membrane possessed a feasible self-repairing ability and good cytocompatibility. In vitro degradation experiments showed that the Mg contents on the coating surface were 0.3, 3.8, 4.1, 6.1, and 7.9% when the degradation times were 0, 1, 2, 3, and 4 weeks, respectively, exhibiting available corrosion resistance. The slow and sustained release of Mg2+ during the degradation process activated extracellular matrix proteins for bone regeneration, accelerating osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). The extract solutions of Mg-MAO/DCPD considerably promoted the activation of the Wnt and PI3K/AKT signaling pathways. Furthermore, the evaluation of the rat skull defect model manifested the outstanding bone-healing efficiency of the Mg-MAO/DCPD membrane. Taken together, the Mg-MAO/DCPD membrane demonstrates an optimized degradation rate and excellent bioactivity and is believed to have great application prospects in bone tissue engineering.


Assuntos
Fosfatos de Cálcio , Materiais Revestidos Biocompatíveis , Magnésio , Ratos , Humanos , Animais , Magnésio/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Osteogênese , Fosfatidilinositol 3-Quinases
14.
ACS Biomater Sci Eng ; 10(6): 4059-4072, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38748565

RESUMO

The silicon nitride (Si3N4) coating exhibits promising potential in oral applications due to its excellent osteogenic and antibacterial properties. However, a comprehensive investigation of Si3N4 coatings in the context of dental implants is still lacking, especially regarding their corrosion resistance and in vivo performance. In this study, Si3N4 coatings were prepared on a titanium surface using the nonequilibrium magnetron sputtering method. A systematic comparison among the titanium group (Ti), Si3N4 coating group (Si3N4-Ti), and sandblasted and acid-etched-treated titanium group (SLA-Ti) has been conducted in vitro and in vivo. The results showed that the Si3N4-Ti group had the best corrosion resistance and antibacterial properties, which were mainly attributed to the dense structure and chemical activity of Si-O and Si-N bonds on the surface. Furthermore, the Si3N4-Ti group exhibited superior cellular responses in vitro and new bone regeneration and osseointegration in vivo, respectively. In this sense, silicon nitride coating shows promising prospects in the field of dental implantology.


Assuntos
Antibacterianos , Materiais Revestidos Biocompatíveis , Implantes Dentários , Osteogênese , Compostos de Silício , Titânio , Titânio/química , Titânio/farmacologia , Compostos de Silício/química , Compostos de Silício/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Osteogênese/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Animais , Propriedades de Superfície , Osseointegração/efeitos dos fármacos , Camundongos , Teste de Materiais , Corrosão
15.
Int Immunopharmacol ; 127: 111423, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38141410

RESUMO

AIM: Periodontitis is a prevalent oral immunoinflammatory condition that is distinguished by the compromised functionality of periodontal ligament stem cells (PDLSCs). Bomidin, a new recombinant antimicrobial peptide (AMP), exhibits antibacterial properties and modulates immune responses. Nevertheless, the precise anti-inflammatory impact of bomidin in periodontitis has yet to be fully elucidated. Thus, the study aimed to clarified the role of bomidin in modulating inflammation and its underlying mechanisms. METHODS: TNF-α was applied to treating PDLSCs for establishing a cell model of periodontitis. Bomidin, RSL3, ML385 and cycloheximide were also used to treat PDLSCs. Transcriptome sequencing, RT-qPCR, western blot, immunofluorescence, immunohistochemistry, Fe2+ detection probe, molecular docking, Co-IP assay, ubiquitination assay and murine models of periodontitis were used. RESULTS: Our study demonstrated that bomidin effectively suppressed inflammation in PDLSCs stimulated by TNF-α, through down-regulating the MAPK and NF-κB signaling pathways. Furthermore, bomidin exerted inhibitory effects on ferroptosis and activated the Keap1/Nrf2 pathway in the TNF-α group. There is a strong likelihood of bonding bomidin with Keap1 protein, which facilitated the degradation of Keap1 protein via the ubiquitin-proteasome pathway, leading to an enhanced translocation of Nrf2 protein to the nucleus. CONCLUSIONS: Bomidin can directly bond to Keap1 protein, resulting in the degradation of Keap1 through the ubiquitin-proteasome pathway, thereby further activating the Keap1/Nrf2 pathway. The upregulation of the Keap1/Nrf2 signaling pathway was found to contribute to the suppression of ferroptosis, ultimately alleviating inflammation in treatment of periodontitis.


Assuntos
Ferroptose , Periodontite , Camundongos , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ligamento Periodontal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Simulação de Acoplamento Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Osteogênese , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Células-Tronco/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/farmacologia
16.
J Mater Sci Mater Med ; 24(11): 2519-28, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23881280

RESUMO

The aim of this study was to evaluate the effects of a simulated porcelain firing process on the surface, corrosion behavior and cell culture response of two nickel-chromium (Ni-Cr) dental alloys. A Be-free alloy and a Be-containing alloy were tested. Before porcelain firing, as-cast specimens were examined for surface composition using X-ray photoelectron spectroscopy and metallurgical phases using X-ray diffraction. Corrosion behaviors were evaluated using electrochemical impedance spectroscopy. 3T3 fibroblasts were cultured and exposed indirectly to specimens. MTT assays were counted after 3 and 6 days. The cell culture mediums exposed to specimens were analyzed for metal ion release. After porcelain firing, similar specimens were examined for the same properties. In both as-cast and fired conditions, the Be-free Ni-Cr alloy showed significantly more resistance to corrosion than the Be-containing Ni-Cr alloy, which exhibited BeNi phase. After porcelain firing, the corrosion resistance of the Be-free Ni-Cr alloy decreased statistically, corresponding with evident decreases of Cr and Ni oxides on the alloy surface. Also, the alloy's MTT assay decreased significantly corresponding with an obvious increase of Ni-ion release after the firing. For the Be-containing Ni-Cr alloy, the firing process led to increases of surface oxides and metallic Be, while its corrosion resistance and cell culture response were not significantly changed after porcelain firing. The results suggested that the corrosion resistance and biocompatibility of the Be-free Ni-Cr alloy decreased after porcelain firing, whereas the firing process had little effect on the same properties of the Be-containing Ni-Cr alloy.


Assuntos
Cromo , Corrosão , Ligas Dentárias , Porcelana Dentária/química , Espectroscopia Dielétrica/métodos , Níquel , Espectroscopia Fotoeletrônica/métodos , Células 3T3 , Animais , Camundongos , Propriedades de Superfície , Difração de Raios X
17.
Front Immunol ; 14: 1194662, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37261355

RESUMO

Macrophages are an integral part of the innate immune response in periodontal tissue and play a crucial role in the progression of periodontitis. Here we reported that macrophages also provoke periodontitis-induced gingival destruction through Piezol-mediated collagen degradation. We discovered that the PIEZO1 expression was markedly elevated in patients with periodontitis through transcriptomic profiling. Moreover, Piezo1 promoted macrophage polarization toward the M1 type in response to lipopolysaccharide (LPS) and induced production of proinflammatory cytokines, which in turn stimulated production of matrix metalloproteinases (MMPs) leading to collagen degradation. Our study suggests that Piezol might be a potential therapeutic target for treating periodontitis-induced gingival destruction.


Assuntos
Gengiva , Periodontite , Humanos , Gengiva/metabolismo , Periodontite/metabolismo , Metaloproteinases da Matriz/metabolismo , Colágeno/metabolismo , Macrófagos/metabolismo , Canais Iônicos/metabolismo
18.
Discov Med ; 35(179): 1104-1113, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058076

RESUMO

BACKGROUND: Endosseous implants are widely used as a treatment for tooth loss, but gaps in the implant-abutment interface, and the cavity inside the implant, can cause inflammation of the tissue surrounding the implant. Currently available filling materials, however, cannot solve these problems. Therefore, the development of new antibacterial materials is key. In this study, we synthesized Ag nanoparticle-coated polytetrafluoroethylene (PTFE), analyzed the effect of Ag ion concentration, and estimated the antibacterial effects against oral pathogens in vitro. Method: The Ag nanoparticles (AgNPs)-modified PTFE was achieved using self-polymerized dopamine in an alkaline solution (2 mg/mL) and reduction reaction of Ag ions (0.01 mol/L and 0.05 mol/L). The surface features, chemical components, and wettability were characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and contact angle measurement. The antibacterial effect against Streptococcus mutans and Porphyromonas gingivalis was evaluated by counting colony-forming units on agar media and the visualization of bacteria present on the specimens by SEM and confocal laser scanning microscope (CLSM). RESULTS: The surface characterization results indicated that a polydopamine film was successfully formed on the PTFE membrane, and spherical AgNPs were successfully reduced. With increasing concentration of the Ag precursor, the contents of the AgNPs increased (p < 0.05). The antibacterial ratio of AgNP-coated PTFE against Streptococcus mutans and Porphyromonas gingivalis reached 94.2% and 80.6%, respectively. The results of antibacterial testing analyzed via SEM and CLSM also demonstrated the robust antibacterial ability of AgNPs-modified PTFE (p < 0.05). CONCLUSIONS: AgNPs-modified PTFE has great potential to function as an implant filling material with enhanced antibacterial properties, and has the potential to be a novel antimicrobial material for the prevention of peri-implantitis in the clinic.


Assuntos
Implantes Dentários , Nanopartículas Metálicas , Humanos , Prata/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Politetrafluoretileno
19.
Biol Cell ; 103(4): 185-96, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21323645

RESUMO

BACKGROUND INFORMATION: Immature dental papilla stem cells and mature dental pulp stem cells are capable of performing the dentinogenesis under suitable circumstances. However, a dentinogenic comparison between immature and mature dental root stem cells remains unknown. RESULTS: iRPSCs (immature root papilla stem cells) at the root-forming stage and mRPSCs (mature root pulp stem cells) at the root-completed stage were isolated from 16-day-old and 8-week-old rat first molar roots, respectively. Growth kinetics and flow cytometry results showed that iRPSCs presented more active proliferation properties than mRPSCs. Their odontoblastic differentiation and dentinogenic potential were subsequently compared both in vitro and in vivo. iRPSCs exhibited a more potent odontoblastic differentiation than mRPSCs in vitro, as indicated by the higher levels of gene expression for dentin sialophosphoprotein and ALP (alkaline phosphatase), increased protein expression of dentin sialoprotein and runt-related transcription factor 2, decreased gene/protein expression for osterix/osteocalcin (osteogenic markers), elevated ALP activity and enhanced calcium deposition in the mineralization-inducing media. Allotransplantation results demonstrated that all iRPSCs pellets in vivo performed typical dentinogenesis, whereas mRPSCs pellets mainly produced bone-like tissues. CONCLUSION: iRPSCs presented stronger dentinogenesis but weaker osteogenesis than did mRPSCs, suggesting that the dentinogenic competence of root mesenchymal stem cells decreases, whereas their osteogenic potential the increases following the maturation of the tooth root.


Assuntos
Papila Dentária/citologia , Polpa Dentária/citologia , Dentinogênese , Células-Tronco/citologia , Animais , Diferenciação Celular , Células Cultivadas , Papila Dentária/crescimento & desenvolvimento , Papila Dentária/metabolismo , Polpa Dentária/crescimento & desenvolvimento , Polpa Dentária/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Odontoblastos/citologia , Odontoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo , Raiz Dentária/citologia , Raiz Dentária/crescimento & desenvolvimento , Raiz Dentária/metabolismo
20.
Chem Biol Interact ; 354: 109835, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35090876

RESUMO

An in vitro model was established to simulate a diabetes-type environment by treating human periodontal stem cells with advanced glycation end-products (AGEs). Periostin (POSTN) plays a crucial role in maintaining the integrity of periodontal tissues. However, the role of POSTN in human periodontal stem cells stimulated by AGEs remains unknown. Diabetes mellitus is considered a metabolic disease, and DNA methylation of CpG islands is a biomarker of metabolic syndromes. Diabetes has been found to be closely related to the DNA methylation of certain genes. Here, we investigated the protective mechanism and effect of POSTN on osteogenesis and oxidative stress in the AGE environment, and further explored the CpG island methylation of specific genes potentially mediated by POSTN. The optimal concentration of AGEs was screened using CCK8. AGEs were found to contribute to oxidative stress. Conversely, reactive oxygen species production and malondialdehyde and superoxide activity indicated that the AGE + POSTN group decreased oxidative injury. According to an alkaline phosphatase assay, Alizarin Red S staining, and the expression of key genes and proteins involved in osteogenesis, POSTN mitigated the inhibitory effects of AGE on cell proliferation and osteogenic differentiation potential during osteogenic differentiation. In contrast, the growth and osteogenesis of human periodontal stem cells were notably suppressed by POSTN knockdown. Bisulfite sequencing PCR was used to evaluate the DNA methylation status. Moreover, AGE elevated the expression of DNA methyltransferas 1 (DNMT1) and inhibited the activation of CALAL promoter methylation, which was rescued by the addition of POSTN and 5-Azacytidine (5-AZA). In conclusion, POSTN attenuated the AGE-induced inhibition of osteogenesis in periodontal ligament stem cells by reducing AGE receptor levels and DNA methylation of the calcitonin-related polypeptide α (CALCA) promoter. Thus, POSTN is a promising candidate for dental bone regeneration, representing a novel therapeutic agent for diabetic patients. The mechanism underlying these processes may provide new insights into novel therapeutic targets for improving abnormal bone metabolism in patients with diabetes.


Assuntos
Osteogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA