Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 17(6): 724-731, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33820990

RESUMO

Genetically modified microorganisms (GMMs) can enable a wide range of important applications including environmental sensing and responsive engineered living materials. However, containment of GMMs to prevent environmental escape and satisfy regulatory requirements is a bottleneck for real-world use. While current biochemical strategies restrict unwanted growth of GMMs in the environment, there is a need for deployable physical containment technologies to achieve redundant, multi-layered and robust containment. We developed a hydrogel-based encapsulation system that incorporates a biocompatible multilayer tough shell and an alginate-based core. This deployable physical containment strategy (DEPCOS) allows no detectable GMM escape, bacteria to be protected against environmental insults including antibiotics and low pH, controllable lifespan and easy retrieval of genomically recoded bacteria. To highlight the versatility of DEPCOS, we demonstrated that robustly encapsulated cells can execute useful functions, including performing cell-cell communication with other encapsulated bacteria and sensing heavy metals in water samples from the Charles River.


Assuntos
Bactérias/efeitos dos fármacos , Hidrogéis/farmacologia , Alginatos/química , Antibacterianos/farmacologia , Bactérias/genética , Materiais Biocompatíveis , Bioengenharia , DNA Bacteriano/química , DNA Bacteriano/genética , Monitoramento Ambiental , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Heme/química , Metais Pesados/química , Organismos Geneticamente Modificados , Percepção de Quorum , Rios , Poluentes da Água/química
2.
Nat Mater ; 20(5): 691-700, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33432140

RESUMO

Biological systems assemble living materials that are autonomously patterned, can self-repair and can sense and respond to their environment. The field of engineered living materials aims to create novel materials with properties similar to those of natural biomaterials using genetically engineered organisms. Here, we describe an approach to fabricating functional bacterial cellulose-based living materials using a stable co-culture of Saccharomyces cerevisiae yeast and bacterial cellulose-producing Komagataeibacter rhaeticus bacteria. Yeast strains can be engineered to secrete enzymes into bacterial cellulose, generating autonomously grown catalytic materials and enabling DNA-encoded modification of bacterial cellulose bulk properties. Alternatively, engineered yeast can be incorporated within the growing cellulose matrix, creating living materials that can sense and respond to chemical and optical stimuli. This symbiotic culture of bacteria and yeast is a flexible platform for the production of bacterial cellulose-based engineered living materials with potential applications in biosensing and biocatalysis.


Assuntos
Acetobacteraceae/crescimento & desenvolvimento , Celulose/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Acetobacteraceae/genética , Técnicas de Cocultura , Saccharomyces cerevisiae/genética
3.
Proc Natl Acad Sci U S A ; 114(9): 2200-2205, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28202725

RESUMO

Living systems, such as bacteria, yeasts, and mammalian cells, can be genetically programmed with synthetic circuits that execute sensing, computing, memory, and response functions. Integrating these functional living components into materials and devices will provide powerful tools for scientific research and enable new technological applications. However, it has been a grand challenge to maintain the viability, functionality, and safety of living components in freestanding materials and devices, which frequently undergo deformations during applications. Here, we report the design of a set of living materials and devices based on stretchable, robust, and biocompatible hydrogel-elastomer hybrids that host various types of genetically engineered bacterial cells. The hydrogel provides sustainable supplies of water and nutrients, and the elastomer is air-permeable, maintaining long-term viability and functionality of the encapsulated cells. Communication between different bacterial strains and with the environment is achieved via diffusion of molecules in the hydrogel. The high stretchability and robustness of the hydrogel-elastomer hybrids prevent leakage of cells from the living materials and devices, even under large deformations. We show functions and applications of stretchable living sensors that are responsive to multiple chemicals in a variety of form factors, including skin patches and gloves-based sensors. We further develop a quantitative model that couples transportation of signaling molecules and cellular response to aid the design of future living materials and devices.


Assuntos
Materiais Biocompatíveis/síntese química , Técnicas Biossensoriais , Elastômeros/síntese química , Escherichia coli/química , Proteínas de Fluorescência Verde/genética , Hidrogéis/síntese química , Acil-Butirolactonas/análise , Acil-Butirolactonas/farmacologia , Transporte Biológico , Células Imobilizadas/metabolismo , Engenharia Química/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Isopropiltiogalactosídeo/análise , Isopropiltiogalactosídeo/farmacologia , Percepção de Quorum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA