Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Appl Microbiol ; 133(2): 842-856, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35490352

RESUMO

AIMS: The aim was to characterize indigenous micro-organisms in oil reservoirs after polymer flooding (RAPF). METHODS: The microbial communities in the crude oil phase (Oil) and in the filter-graded aqueous phases Aqu0.22 (>0.22 µm) and Aqu0.1 (0.1-0.22 µm) were investigated by 16S rRNA gene high-throughput sequencing. RESULTS: Indigenous micro-organisms related to hydrocarbon degradation prevailed in the three phases of each well. However, obvious differences in bacterial compositions were observed amongst the three phases of the same well and amongst the same phase of different wells. The crude oil and Aqu0.22 shared many dominant bacteria. Aqu0.1 contained a unique bacterial community in each well. Most bacteria in Aqu0.1 were affiliated to culturable genera, suggesting that they may adapt to the oil reservoir environment by reduction of cell size. Contrary to the bacterial genera, archaeal genera were similar in the three phases but varied in relative abundances. The observed microbial differences may be driven by specific environmental factors in each oil well. CONCLUSIONS: The results suggest an application potential of microbial enhanced oil recovery (MEOR) technology in RAPF. The crude oil and Aqu0.1 contain many different functional micro-organisms related to hydrocarbon degradation. Both should not be overlooked when investing and exploring the indigenous micro-organisms for MEOR. SIGNIFICANCE AND IMPACT OF THE STUDY: This work facilitates the understanding of microbial community structures in RAPF and provides information for microbial control in oil fields.


Assuntos
Microbiota , Petróleo , Bactérias/genética , Hidrocarbonetos , Microbiota/genética , Campos de Petróleo e Gás , Polímeros , RNA Ribossômico 16S/genética , Água
2.
Prep Biochem Biotechnol ; 43(7): 682-95, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23768113

RESUMO

Corn stover is the most abundant agricultural residue in China and a valuable reservoir for bioethanol production. In this study, we proposed a process for producing bioethanol from corn stover; the pretreatment prior to presaccharification, followed by simultaneous saccharification and fermentation (SSF) by using a flocculating Saccharomyces cerevisiae strain, was optimized. Pretreatment with acid-alkali combination (1% H2SO4, 150 °C, 10 min, followed by 1% NaOH, 80°C, 60 min) resulted in efficient lignin removal and excellent recovery of xylose and glucose. A glucose recovery efficiency of 92.3% was obtained by enzymatic saccharification, when the pretreated solid load was 15%. SSF was carried out at 35 °C for 36 hr after presaccharification at 50 °C for 24 hr, and an ethanol yield of 88.2% was achieved at a solid load of 15% and an enzyme dosage of 15 FPU/g pretreated corn stover.


Assuntos
Etanol/síntese química , Fermentação , Hidróxido de Sódio/química , Ácidos Sulfúricos/química , Zea mays/química , Biotecnologia/métodos , Glucose/química , Glucose/metabolismo , Hidrólise , Lignina/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo
3.
Environ Sci Pollut Res Int ; 30(58): 121584-121598, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957495

RESUMO

The effect of microplastics (MPs) retained in waste activated sludge (WAS) on anaerobic digestion (AD) performance has attracted more and more attention. However, their effect on thermophilic AD remains unclear. Here, the influence of polyvinyl chloride (PVC) MPs on methanogenesis and active microbial communities in mesophilic (37 °C) and thermophilic (55 °C) AD was investigated. The results showed that 1, 5, and 10 mg/L PVC MPs significantly promoted the cumulative methane yield in mesophilic AD by 5.62%, 7.36%, and 8.87%, respectively, while PVC MPs reduced that in thermophilic AD by 13.30%, 18.82%, and 19.99%, respectively. Moreover, propionate accumulation was only detected at the end of thermophilic AD with PVC MPs. Microbial community analysis indicated that PVC MPs in mesophilic AD enriched hydrolytic and acidifying bacteria (Candidatus Competibacter, Lentimicrobium, Romboutsia, etc.) together with acetoclastic methanogens (Methanosarcina, Methanosaeta). By contrast, most carbohydrate-hydrolyzing bacteria, propionate-oxidizing bacterium (Pelotomaculum), and Methanosarcina were inhibited by PVC MPs in thermophilic AD. Network analysis further suggested that PVC MPs significantly changed the relationship of key microorganisms in the AD process. A stronger correlation among the above genera occurred in mesophilic AD, which may promote the methanogenic performance. These results suggested that PVC MPs affected mesophilic and thermophilic AD of WAS via changing microbial activities and interaction.


Assuntos
Microplásticos , Esgotos , Esgotos/microbiologia , Anaerobiose , Plásticos , Propionatos , Reatores Biológicos , Bactérias , Metano , Temperatura
4.
J Biosci Bioeng ; 131(5): 461-468, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33526306

RESUMO

Increasing ethanol demand and public concerns about environmental protection promote the production of lignocellulosic bioethanol. Compared to that of starch- and sugar-based bioethanol production, the production of lignocellulosic bioethanol is water-intensive. A large amount of water is consumed during pretreatment, detoxification, saccharification, and fermentation. Water is a limited resource, and very high water consumption limits the industrial production of lignocellulosic bioethanol and decreases its environmental feasibility. In this review, we focused on the potential for reducing water consumption during the production of lignocellulosic bioethanol by performing pretreatment and fermentation at high solid loading, omitting water washing after pretreatment, and recycling wastewater by integrating bioethanol production and anaerobic digestion. In addition, the feasibility of these approaches and their research progress were discussed. This comprehensive review is expected to draw attention to water competition between bioethanol production and human use.


Assuntos
Biocombustíveis , Biomassa , Biotecnologia/métodos , Etanol/metabolismo , Lignina/metabolismo , Água/metabolismo
5.
J Biosci Bioeng ; 127(5): 582-588, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30401585

RESUMO

Thermophilic methane fermentation was a valid approach for handling the stillage eluted from ethanol fermentation of waste paper and kitchen waste. The wide organic loading rate (OLR) range (2-14 g VTS/(L d)) for stable performance and relatively high energy recovery efficiency (79.0%) were achieved, and OLR of 8 g VTS/(L d) was optimum for achievement of highest biogas evolution and VTS removal efficiency. Microbial community analysis revealed that hydrolysis of cellulose was the critical step for methane production from the stillage.


Assuntos
Bactérias/metabolismo , Etanol/metabolismo , Metano/biossíntese , Resíduos/análise , Anaerobiose , Biodegradação Ambiental , Biocombustíveis/análise , Reatores Biológicos , Celulose/química , Celulose/metabolismo , Etanol/química , Fermentação , Hidrólise , Papel
6.
Appl Biochem Biotechnol ; 185(1): 191-206, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29101734

RESUMO

Sugarcane bagasse (SCB) and molasses, known as carbohydrate-rich biomass derived from sugar production, can serve as feedstock for bio-ethanol production. To establish a simple process, the production of bio-ethanol through integration of whole pretreated slurry (WPS) of SCB with molasses was investigated. The results showed that microwave-assisted dilute sulfuric acid pretreatment reduced the formation of toxic compounds compared to a pretreatment process involving "conventional heating". Pretreatment at 180 oC with 10% w v-1 solid loading and 0.5% w v-1 H2SO4 was sufficient to achieve efficient enzymatic saccharification of WPS. By conducting separate hydrolysis and fermentation (SHF), an ethanol yield of 90.12% was obtained from the mixture of WPS and molasses, but the ethanol concentration of 33.48 g L-1 was relatively low. By adopting fed-batch SHF, the ethanol concentration reached 41.49 g L-1. Assuming that the molasses were converted to ethanol at an efficiency of 87.21% (i.e., ethanol was obtained from fermentation of molasses alone), the ethanol yield from WPS when a mixture of WPS and molasses was fermented was 78.30%, which was higher than that of enzymatic saccharification of WPS (73.53%). These findings suggest that the production of bio-ethanol via integration of WPS with molasses is a superior method. Graphical Abstract ᅟ.


Assuntos
Celulose/química , Etanol/metabolismo , Micro-Ondas , Melaço , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharum/química , Ácidos Sulfúricos/química
7.
Waste Manag ; 76: 404-413, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29625877

RESUMO

To investigate the effect of delignification on enzymatic saccharification and ethanol fermentation of sugarcane bagasse (SCB), NaClO, NaOH, and Na2CO3 were used to prepare SCB with different lignin contents. We found that a lignin content of approximately 11% was sufficient for enzymatic saccharification and fermentation. Based on this result, an economical delignification pretreatment method using a combination of acid and alkali (CAA) was applied. Lignin content of 11.7% was obtained after CAA pretreatment with 0.5% w/v H2SO4 at 140 °C for 10 min and 1.0% w/v NaOH at 90 °C for 60 min. Presaccharification-simultaneous saccharification and fermentation (P-SSF) of the CAA-pretreated SCB resulted in an ethanol concentration of 43.8 g/L and an ethanol yield of 81.7%, with an enzyme loading of 15 FPU/g-CAA-pretreated SCB. Enzyme activities (filter paper, carboxymethyl cellulase, and ß-glucosidase activities) were determined in liquid phase during P-SSF, indicating that the residual cellulase activity could be further used. Thus, fed-batch P-SSF was carried out, and an ethanol concentration of 43.1 g/L and an ethanol yield of 80.4% were obtained with an enzyme loading of 10 FPU/g-CAA-pretreated SCB. Fed-batch P-SSF was found to be effective to reduce enzyme loading.


Assuntos
Reatores Biológicos , Celulose/metabolismo , Lignina/análise , Celulase , Etanol , Fermentação , Hidrólise , Saccharum
8.
J Biosci Bioeng ; 104(4): 281-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18023800

RESUMO

Distillery wastewater from awamori making was anaerobically treated for one year using thermophilic upflow anaerobic filter (UAF) reactors packed with pyridinium group-containing nonwoven fabric material. The microbial structure and spatial distribution of microorganisms on the support material were characterized using molecular biological methods. The reactor steadily achieved a high TOC loading rate of 18 g/l/d with approximately 80% TOC removal efficiency when non-diluted wastewater was fed. The maximum TOC loading rate increased to 36 g/l/d when treating thrice-diluted wastewater. However, the TOC removal efficiency and gas evolution rate decreased compared with that when non-diluted wastewater was used. Methanogens closely related to Methanosarcina thermophila and Methanoculleus bourgensis and bacteria in the phyla Firmicutes and Bacteroidetes were predominant methanogens and bacteria in the thermophilic UFA reactor, as indicated by 16S rRNA gene clone analysis. Fluorescence in situ hybridization (FISH) results showed that a large quantity of bacterial cells adhered throughout the whole support, and Methanosarcina-like methanogens existed mainly in the relative outside region while Methanoculleus cells were located in the relative inner part of the support. The support material used proved to be an excellent carrier for microorganisms, and a UAF reactor using this kind of support can be used for high-rate treatment of awamori/shochu distillery wastewater.


Assuntos
Bactérias Anaeróbias/fisiologia , Reatores Biológicos/microbiologia , Resíduos Industriais/prevenção & controle , Membranas Artificiais , Ultrafiltração/instrumentação , Purificação da Água/instrumentação , Vinho , Proliferação de Células , Desenho de Equipamento , Análise de Falha de Equipamento , Ultrafiltração/métodos , Purificação da Água/métodos
9.
Waste Manag ; 48: 644-651, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26687227

RESUMO

Waste paper can serve as a feedstock for ethanol production due to being rich in cellulose and not requiring energy-intensive thermophysical pretreatment. In this study, an efficient process was developed to convert waste paper to ethanol. To accelerate enzymatic saccharification, pH of waste paper slurry was adjusted to 4.5-5.0 with H2SO4. Presaccharification and simultaneous saccharification and fermentation (PSSF) with enzyme loading of 40 FPU/g waste paper achieved an ethanol yield of 91.8% and productivity of 0.53g/(Lh) with an ethanol concentration of 32g/L. Fed-batch PSSF was used to decrease enzyme loading to 13 FPU/g waste paper by feeding two separate batches of waste paper slurry. Feeding with 20% w/w waste paper slurry increased ethanol concentration to 41.8g/L while ethanol yield decreased to 83.8%. To improve the ethanol yield, presaccharification was done prior to feeding and resulted in a higher ethanol concentration of 45.3g/L, a yield of 90.8%, and productivity of 0.54g/(Lh). Ethanol fermentation recovered 33.2% of the energy in waste paper as ethanol. The biochemical methane potential of the stillage eluted from ethanol fermentation was 270.5mL/g VTS and 73.0% of the energy in the stillage was recovered as methane. Integrating ethanol fermentation with methane fermentation, recovered a total of 80.4% of the energy in waste paper as ethanol and methane.


Assuntos
Etanol/química , Fermentação , Metano/química , Papel , Reciclagem/métodos , Eliminação de Resíduos/métodos , Antibacterianos/química , Biocombustíveis , Celulase/química , Celulose/metabolismo , Conservação dos Recursos Naturais , Concentração de Íons de Hidrogênio , Hidrólise , Microbiologia Industrial , Saccharomyces cerevisiae , Temperatura , beta-Glucosidase/metabolismo
10.
Bioresour Technol ; 119: 224-33, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22728786

RESUMO

Although concentrated sulfuric acid saccharification is not a novel method for breaking down lignocellulosic biomass, the process by which saccharification affects biomass decomposition, sugar recovery, and by-product generation is not well studied. The present study employed Taguchi experimental design to study the effects of seven parameters on corn stover concentrated sulfuric acid saccharification. The concentration of sulfuric acid and the temperature of solubilization significantly affect corn stover decomposition. They also have significant effects on glucose and xylose recoveries. Low generation of furfural and 5-hydroxymethyl-2-furfural (5HMF) was noted and organic acids were the main by-products detected in the hydrolysate. Temperature also significantly affected the generation of levulinic acid and formic acid; however, acetic acid generation was not significantly influenced by all seven parameters. The ratio of acid to feedstock significantly affected glucose recovery, but not total sugar recovery. The corn stover hydrolysate was well fermented by both glucose- and xylose-fermenting yeast strains.


Assuntos
Carboidratos/síntese química , Carboidratos/isolamento & purificação , Lignina/química , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Ácidos Sulfúricos/química , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA