Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small Methods ; 7(10): e2300370, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37356079

RESUMO

Current artificial designs of the periosteum focus on osteogenic or angiogenic properties, while ignoring the filling and integration with bone microcracks, which trigger a prolonged excessive inflammatory reaction and lead to failure of bone regeneration. In this study, seamless adhesive biomimetic periosteum patches (HABP/Sr-PLA) were prepared to fill microcracks in defective bone via interfacial self-assembly induced by Sr ions mediated metal-ligand interactions among pamidronate disodium-modified hyaluronic acid (HAPD), black phosphorus (BP), and hydrophilic polylactic acid (PLA). In vitro, HABP/Sr-PLA exhibited excellent self-healing properties, seamlessly filled bone microcracks, and significantly enhanced osteogenesis and angiogenesis. Furthermore, in a rat cranial defect model, HABP/Sr-PLA was demonstrated to significantly promote the formation of blood vessels and new bone under mild 808 nm photothermal stimulation (42.8 °C), and the highest protein expression of CD31 and OPN was five times higher than that of the control group and other groups. Therefore, the proposed seamless microcrack-filled bionic periosteum patch is a promising clinical strategy for promoting bone repair.


Assuntos
Biônica , Periósteo , Ratos , Animais , Periósteo/fisiologia , Osteogênese , Regeneração Óssea , Poliésteres
2.
Adv Mater ; 34(19): e2200789, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35267215

RESUMO

Scarring rather than regeneration, is an inevitable outcome of unbalanced amplifications of inflammation-destructive signals and atresia of the regenerative niche. However, identifying and effectively hedging against the risk of scarring and realizing the conversion of regenerative cues remain difficult. In this work, a hedging immune strategy based microfibrous membrane (Him-MFM), by tethering distearoyl phosphoethanolamine layer-supported copoly(lactic/glycolic acid) electrospun fibers with identified CD11b+ /CD68+ scarring subpopulation membranes in the immune landscape after tendon injury to counterweigh tissue damage, is reported. Him-MFM, carrying relevant risk receptors is shown to shift high type I biased polarization, alleviate apoptosis and metabolic stress, and mitigate inflammatory tenocyte response. Remarkably, the hedging immune strategy reverses the damaged tendon sheath barrier to the innate IL-33 secretory phenotype by 4.36 times and initiates the mucous-IL-33-Th2 axis, directly supplying a transient but obligate regenerative niche for sheath stem cell proliferation. In murine flexor tendon injury, the wrapping of Him-MFM alleviates pathological responses, protects tenocytes in situ, and restores hierarchically arranged collagen fibers covered with basement membrane, and is structurally and functionally comparable to mature tendons, demonstrating that the hedging immunity is a promising strategy to yield regenerative responses not scarring.


Assuntos
Materiais Biocompatíveis , Traumatismos dos Tendões , Animais , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Cicatriz , Interleucina-33 , Masculino , Camundongos , Tendões/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA