RESUMO
The rheological behavior of aqueous suspensions of lignocellulose nanofibrils (LCNFs) is investigated systematically by considering the coupled effect of residual lignin and LCNF morphology. The LCNF was obtained by high-energy fluidization of TEMPO-oxidized mechanical fibers, followed by size fractionation (fibril widths of â¼5, â¼9, and â¼18 nm). The nanofibril width and the corresponding fibril-fibril interactions are strongly influenced by the presence and distribution of lignin in the respective fractions, either retained on the fibril surface or as free structures present in the finest size fraction. All samples containing lignin display dilatancy, typifying gel suspensions with aggregated hydrophobic particles. Fine fractionated samples display strong gel behavior. The coarse fractionated sample, by contrast, shows a greater tendency to flocculate via entanglement and displays less gel-like characteristics; hence, it dewaters more freely.
Assuntos
Nanofibras , Nanoestruturas , Fracionamento Químico , Lignina , ViscosidadeRESUMO
Modifying natural polymers with silicones gives new possibilities for packaging products and waste management. In this study, the innovative papers produced were altered following the reaction of polysaccharides and organosilicon compounds. The susceptibility of the studied material to biodegradation caused by a brown-rot fungus was assessed. Strength properties by tensile strength and dynamic mechanical analysis and hydrophobic properties by water uptake test and water contact angle analysis were evaluated. Moreover, elemental analysis by ICP method was controlled. The durability against fungi and the hydrophobic properties were increased by the modification. The fungal decay resistance of the silanized paper was reduced by water storage, which allows for managing paper waste. Cellulose-based paper treated with starch-modified methyltrimethoxysilane showed potential as a packaging material due to its reduced water uptake. Possible application areas could be corrugated boxes, cellulose thermoformed products for electronics, and food packaging. However, the water-repellent effect is limited to short-term exposure in humid conditions.