Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pharm Dev Technol ; 23(4): 343-350, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28145793

RESUMO

Copaiba oleoresin (CPO), obtained from Copaifera landgroffii, is described as active to a large number of diseases and more recently in the endometriosis treatment. In this work, poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing CPO were obtained using the design of experiments (DOE) as a tool to optimize the production process. The nanoparticles optimized by means of DOE presented an activity in relation to the cellular viability of endometrial cells. The DOE showed that higher amounts of CPO combined with higher surfactant concentrations resulted in better encapsulation efficiency and size distribution along with good stability after freeze drying. The encapsulation efficiency was over 80% for all produced nanoparticles, which also presented sizes below 300 nm and spherical shape. A decrease in viability of endometrial stromal cells from ectopic endometrium of patients with endometriosis and from eutopic endometriotic lesions was demonstrated after 48 h of incubation with the CPO nanoparticles. The nanoparticles without CPO were not able to alter the cell viability of the same cells, indicating that this material was not cytotoxic to the tested cells and suggesting that the effect was specific to CPO. The results indicate that the use of CPO nanoparticles may represent a promising alternative for the treatment of endometriosis.


Assuntos
Portadores de Fármacos/química , Ácido Láctico/química , Nanopartículas/química , Preparações de Plantas/administração & dosagem , Ácido Poliglicólico/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Endometriose/tratamento farmacológico , Fabaceae/química , Feminino , Liofilização , Humanos , Tamanho da Partícula , Preparações de Plantas/química , Preparações de Plantas/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
2.
Int J Pharm ; 661: 124465, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004290

RESUMO

Liposomes are one of the most important drug delivery vectors, nowadays used in clinics. In general, polyethylene glycol (PEG) is used to ensure the stealth properties of the liposomes. Here, we have employed hydrophilic, biocompatible and highly non-fouling N-(2-hydroxypropyl) methacrylamide (HPMA)-based copolymers containing hydrophobic cholesterol anchors for the surface modification of liposomes, which were prepared by the method of lipid film hydration and extrusion through 100 nm polycarbonate filters. Efficient surface modification of liposomes was confirmed by transmission electron microscopy, atomic force microscopy, and gradient ultracentrifugation. The ability of long-term circulation in the vascular bed was demonstrated in rabbits after i.v. application of fluorescently labelled liposomes. Compared to PEGylated liposomes, HPMA-based copolymer-modified liposomes did not induce specific antibody formation and did not activate murine and human complement. Compared with PEGylated liposomes, HPMA-based copolymer-modified liposomes showed a better long-circulating effect after repeated administration. HPMA-based copolymer-modified liposomes thus represent suitable new candidates for a generation of safer and improved liposomal drug delivery platforms.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Polietilenoglicóis , Propriedades de Superfície , Animais , Coelhos , Camundongos , Polietilenoglicóis/química , Humanos , Ativação do Complemento/efeitos dos fármacos , Acrilamidas/química , Colesterol/química , Colesterol/sangue , Sistemas de Liberação de Medicamentos , Masculino , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA