Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(5): e2210651120, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36689664

RESUMO

Millions of years of evolution have allowed animals to develop unusual locomotion capabilities. A striking example is the legless-jumping of click beetles and trap-jaw ants, which jump more than 10 times their body length. Their delicate musculoskeletal system amplifies their muscles' power. It is challenging to engineer insect-scale jumpers that use onboard actuators for both elastic energy storage and power amplification. Typical jumpers require a combination of at least two actuator mechanisms for elastic energy storage and jump triggering, leading to complex designs having many parts. Here, we report the new concept of dynamic buckling cascading, in which a single unidirectional actuation stroke drives an elastic beam through a sequence of energy-storing buckling modes automatically followed by spontaneous impulsive snapping at a critical triggering threshold. Integrating this cascade in a robot enables jumping with unidirectional muscles and power amplification (JUMPA). These JUMPA systems use a single lightweight mechanism for energy storage and release with a mass of 1.6 g and 2 cm length and jump up to 0.9 m, 40 times their body length. They jump repeatedly by reengaging the latch and using coiled artificial muscles to restore elastic energy. The robots reach their performance limits guided by theoretical analysis of snap-through and momentum exchange during ground collision. These jumpers reach the energy densities typical of the best macroscale jumping robots, while also matching the rapid escape times of jumping insects, thus demonstrating the path toward future applications including proximity sensing, inspection, and search and rescue.


Assuntos
Formigas , Besouros , Robótica , Animais , Locomoção/fisiologia , Músculos , Fenômenos Biomecânicos
2.
Small ; 19(49): e2305017, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37528504

RESUMO

Eco/bioresorbable electronics represent an emerging class of technology defined by an ability to dissolve or otherwise harmlessly disappear in environmental or biological surroundings after a period of stable operation. The resulting devices provide unique capabilities as temporary biomedical implants, environmental sensors, and related systems. Recent publications report schemes to overcome challenges in fabrication that follow from the low thermostability and/or high chemical reactivity of the eco/bioresorbable constituent materials. Here, this work reports the use of high-speed sewing machines, as the basis for a high-throughput manufacturing technique that addresses many requirements for these applications, without the need for high temperatures or reactive solvents. Results demonstrate that a range of eco/bioresorbable metal wires and polymer threads can be embroidered into complex, user-defined conductive patterns on eco/bioresorbable substrates. Functional electronic components, such as stretchable interconnects and antennas are possible, along with fully integrated systems. Examples of the latter include wirelessly powered light-emitting diodes, radiofrequency identification tags, and temporary cardiac pacemakers. These advances add to a growing range of options in high-throughput, automated fabrication of eco/bioresorbable electronics.


Assuntos
Implantes Absorvíveis , Eletrônica , Metais , Polímeros , Solventes
3.
Science ; 339(6119): 535-9, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23372006

RESUMO

Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.


Assuntos
Comércio/tendências , Nanotubos de Carbono/química , Técnicas Biossensoriais , Biotecnologia , Polímeros/química
4.
Adv Mater ; 24(13): 1628-74, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22396318

RESUMO

Widespread approaches to fabricate surfaces with robust micro- and nanostructured topographies have been stimulated by opportunities to enhance interface performance by combining physical and chemical effects. In particular, arrays of asymmetric surface features, such as arrays of grooves, inclined pillars, and helical protrusions, have been shown to impart unique anisotropy in properties including wetting, adhesion, thermal and/or electrical conductivity, optical activity, and capability to direct cell growth. These properties are of wide interest for applications including energy conversion, microelectronics, chemical and biological sensing, and bioengineering. However, fabrication of asymmetric surface features often pushes the limits of traditional etching and deposition techniques, making it challenging to produce the desired surfaces in a scalable and cost-effective manner. We review and classify approaches to fabricate arrays of asymmetric 2D and 3D surface features, in polymers, metals, and ceramics. Analytical and empirical relationships among geometries, materials, and surface properties are discussed, especially in the context of the applications mentioned above. Further, opportunities for new fabrication methods that combine lithography with principles of self-assembly are identified, aiming to establish design principles for fabrication of arbitrary 3D surface textures over large areas.


Assuntos
Materiais Biocompatíveis/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Animais , Anisotropia , Condutividade Elétrica , Humanos , Propriedades de Superfície , Engenharia Tecidual/métodos
5.
ACS Nano ; 6(6): 5091-101, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22571676

RESUMO

The production of high-performance carbon nanotube (CNT) materials demands understanding of the growth behavior of individual CNTs as well as collective effects among CNTs. We demonstrate the first use of grazing incidence small-angle X-ray scattering to monitor in real time the synthesis of CNT films by chemical vapor deposition. We use a custom-built cold-wall reactor along with a high-speed pixel array detector resulting in a time resolution of 10 msec. Quantitative models applied to time-resolved X-ray scattering patterns reveal that the Fe catalyst film first rapidly dewets into well-defined hemispherical particles during heating in a reducing atmosphere, and then the particles coarsen slowly upon continued annealing. After introduction of the carbon source, the initial CNT diameter distribution closely matches that of the catalyst particles. However, significant changes in CNT diameter can occur quickly during the subsequent CNT self-organization process. Correlation of time-resolved orientation data to X-ray scattering intensity and height kinetics suggests that the rate of self-organization is driven by both the CNT growth rate and density, and vertical CNT growth begins abruptly when CNT alignment reaches a critical threshold. The dynamics of CNT size evolution and self-organization vary according to the catalyst annealing conditions and substrate temperature. Knowledge of these intrinsically rapid processes is vital to improve control of CNT structure and to enable efficient manufacturing of high-density arrays of long, straight CNTs.


Assuntos
Membranas Artificiais , Nanopartículas/química , Nanopartículas/ultraestrutura , Cristalização/métodos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/efeitos da radiação , Teste de Materiais , Conformação Molecular/efeitos da radiação , Nanopartículas/efeitos da radiação , Tamanho da Partícula , Propriedades de Superfície/efeitos da radiação , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA