Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 21(5-6): 1013-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25366879

RESUMO

Impaired salivary gland (SG) function leading to oral diseases is relatively common with no adequate solution. Previously, tissue engineering of SG had been proposed to overcome this morbidity, however, not yet clinically available. Multiwall inorganic (tungsten disulfide [WS2]) nanotubes (INT-WS2) and fullerene-like nanoparticles (IF-WS2) have many potential medical applications. A yet unexplored venue application is their interaction with SG, and therefore, our aim was to test the biocompatibility of INT/IF-WS2 with the A5 and rat submandibular cells (RSC) SG cells. The cells were cultured and subjected after 1 day to different concentrations of INT-WS2 and were compared to control groups. Growth curves, trypan blue viability test, and carboxyfluorescein succinimidyl ester (CFSE) proliferation assay were obtained. Furthermore, cells morphology and interaction with the nanoparticles were observed by light microscopy, scanning electron microscopy and transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy. The results showed no significant differences in growth curves, proliferation kinetics, and viability between the groups compared. Moreover, no alterations were observed in the cell morphology. Interestingly, TEM images indicated that the nanoparticles are uptaken by the cells and accumulate in cytoplasmic vesicles. These results suggest promising future medical applications for these nanoparticles.


Assuntos
Materiais Biocompatíveis/farmacologia , Fulerenos/farmacologia , Teste de Materiais/métodos , Nanopartículas/química , Nanotubos/química , Glândula Submandibular/citologia , Sulfetos/farmacologia , Compostos de Tungstênio/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Nanopartículas/ultraestrutura , Nanotubos/ultraestrutura , Ratos , Glândula Submandibular/efeitos dos fármacos , Glândula Submandibular/ultraestrutura
2.
Nanoscale ; 5(18): 8526-32, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23884307

RESUMO

Insertion of endoscopes and other medical devices into the human body are ubiquitous, especially among aged males. The applied force for the insertion/extraction of the device from the urethra must overcome endoscope-surface-human-tissue interactions. In daily practice a gel is applied on the endoscope surface, in order to facilitate its entry into the urethra, providing also for local anesthesia. In the present work, a new solid-state lubricant has been added to the gel, in order to reduce the metal-urethra interaction and alleviate the potential damage to the epithelial tissue. For that purpose, a urethra model was designed and fabricated, which allowed a quantitative assessment of the applied force for extraction of the endoscope from a soft polymer-based ring. It is shown that the addition of MoS2 nanoparticles with fullerene-like structure (IF-MoS2) and in particular rhenium-doped nanoparticles (Re:IF-MoS2) to Esracain gel applied on the metal-lead reduced the friction substantially. The Re:IF-MoS2 showed better results than the undoped fullerene-like nanoparticles and both performed better than the gel alone. The mechanism of friction reduction is attributed to fullerenes' ability to roll and act as a separator between the active parts of the model.


Assuntos
Fulerenos/química , Nanopartículas/química , Dimetilpolisiloxanos/química , Equipamentos e Provisões , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Rênio/química
3.
ACS Nano ; 5(2): 1276-81, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21230008

RESUMO

We report on the synthesis of inorganic fullerene-like molybdenum disulfide (MoS(2)) nanoparticles by pulsed laser ablation (PLA) in water. The final products were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and resonance Raman spectroscopy, etc. Cell viability studies show that the as-prepared MoS(2) nanoparticles have good solubility and biocompatibility, which may show a great potential in various biomedical applications. It is shown that the technique of PLA in water also provides a green and convenient method to synthesize novel nanomaterials, especially for biocompatible nanomaterials.


Assuntos
Materiais Biocompatíveis/química , Dissulfetos/química , Fulerenos/química , Lasers , Molibdênio/química , Nanopartículas/química , Água/química , Materiais Biocompatíveis/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Nanopartículas/toxicidade , Solubilidade
4.
Philos Trans A Math Phys Eng Sci ; 362(1823): 2099-125, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15370473

RESUMO

Following the discovery of carbon fullerenes and carbon nanotubes, it was hypothesized that nanoparticles of inorganic compounds with layered (two-dimensional) structure, such as MoS(2), will not be stable against folding and form nanotubes and fullerene-like structures: IF. The synthesis of numerous other inorganic nanotubes has been reported in recent years. Various techniques for the synthesis of inorganic nanotubes, including high-temperature reactions and strategies based on 'chemie douce' (soft chemistry, i.e. low-temperature) processes, are described. First-principle, density functional theory based calculations are able to provide substantial information on the structure and properties of such nanotubes. Various properties of inorganic nanotubes, including mechanical, electronic and optical properties, are described in brief. Some potential applications of the nanotubes in tribology, protection against impact, (photo)catalysis, batteries, etc., are discussed.


Assuntos
Materiais Biocompatíveis/química , Cristalização/métodos , Eletroquímica/métodos , Compostos Inorgânicos/química , Nanotecnologia/métodos , Nanotubos/química , Nanotubos/ultraestrutura , Cristalização/tendências , Eletroquímica/instrumentação , Eletroquímica/tendências , Desenho de Equipamento , Substâncias Macromoleculares , Conformação Molecular , Nanotecnologia/instrumentação , Nanotecnologia/tendências , Nanotubos de Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA