Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Soft Matter ; 17(45): 10312-10321, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34664052

RESUMO

Microscopic hydrogels, also referred to as microgels, find broad application in life and materials science. A well-established technique for fabricating uniform microgels is droplet microfluidics. Here, optimal mixing of hydrogel precursor components is crucial to yield homogeneous microgels with respect to their morphology, mechanics, and distribution of functional moieties. However, when processing premixed polymer precursors that are highly reactive, fast or even instantaneous gelation inside fluid reservoirs or the microchannels of the flow cell commonly occurs, leading to an increase of fluid viscosity over time, and thus exacerbating the intrinsic control over fluid flow rates, droplet and microgel uniformity, which are key selling points of microfluidics in material design. To address these challenges, we utilize microflow cells with integrated electrodes, which enable fast addition and mixing of hydrogel precursors on demand by means of emulsion droplet coalescence. Here, two populations of surfactant-stabilized aqueous droplets - the first containing the material basis of the microgel, and the second containing another gel-forming component (e.g., a crosslinker) are formed at two consecutive microchannel junctions and merged via temporary thin-film instability. Our approach provides the ability to process such hydrogel systems that are otherwise challenging to process into uniform droplets and microgels by conventional droplet microfluidics. To demonstrate its versatility, we fabricate microgels with uniform shape and composition using fast hydrogelation via thiol-Michael addition reaction or non-covalent self-assembly. Furthermore, we elucidate the limitations of electrocoalescence of reactive hydrogel precursors by processing sodium alginate, crosslinked by calcium-induced ionic interactions. For this instantaneous type of hydrogelation, electrocoalescence of alginate and calcium ions does not result in the formation of morphologically isotropic microgels. Instead, it enables the creation of anisotropic microgel morphologies with tunable shape, which have previously only been achieved by selective crosslinking of elaborate higher-order emulsions or by aqueous two-phase systems as microgel templates.


Assuntos
Hidrogéis , Microgéis , Microfluídica , Polímeros , Tensoativos
2.
J Mater Sci Mater Med ; 30(6): 65, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127393

RESUMO

Hyaluronan (HA)-based microgels generated in a microfluidic approach, containing an artificial extracellular matrix composed of collagen and high-sulfated hyaluronan (sHA3), were incorporated into a HA/collagen-based hydrogel matrix. This significantly enhanced the retention of noncrosslinked sHA3 within the gels enabling controlled sHA3 presentation. Gels containing sHA3 bound higher amounts of transforming growth factor-ß1 (TGF-ß1) compared to pure HA/collagen hydrogels. Moreover, the presence of sHA3-containing microgels improved the TGF-ß1 retention within the hydrogels. These findings are promising for developing innovative biomaterials with adjustable sHA3 release and growth factor interaction profiles to foster skin repair, e.g., by rebalancing dysregulated TGF-ß1 levels.


Assuntos
Colágeno/química , Ácido Hialurônico/química , Hidrogéis/química , Microgéis/química , Fator de Crescimento Transformador beta1/metabolismo , Animais , Materiais Biocompatíveis/química , Bovinos , Matriz Extracelular/metabolismo , Glicosaminoglicanos/química , Humanos , Microfluídica , Ratos , Pele/metabolismo , Pele/patologia , Streptococcus , Sulfatos/metabolismo , Cicatrização
3.
Proc Natl Acad Sci U S A ; 109(2): 384-9, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22203968

RESUMO

Like charges stabilize emulsions, whereas opposite charges break emulsions. This is the fundamental principle for many industrial and practical processes. Using micrometer-sized pH-sensitive polymeric hydrogel particles as emulsion stabilizers, we prepare emulsions that consist of oppositely charged droplets, which do not coalesce. We observe noncoalescence of oppositely charged droplets in bulk emulsification as well as in microfluidic devices, where oppositely charged droplets are forced to collide within channel junctions. The results demonstrate that electrostatic interactions between droplets do not determine their stability and reveal the unique pH-dependent properties of emulsions stabilized by soft microgel particles. The noncoalescence can be switched to coalescence by neutralizing the microgels, and the emulsion can be broken on demand. This unusual feature of the microgel-stabilized emulsions offers fascinating opportunities for future applications of these systems.


Assuntos
Emulsões/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Microfluídica/métodos , Concentração de Íons de Hidrogênio , Microfluídica/instrumentação , Microscopia de Fluorescência , Eletricidade Estática , Propriedades de Superfície
4.
ACS Synth Biol ; 12(12): 3695-3703, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37965889

RESUMO

Microfluidically fabricated polymer microgels are used as an experimental platform to analyze protein-DNA interactions regulating bacterial cell division. In particular, we focused on the nucleoid-associated protein SlmA, which forms a nucleoprotein complex with short DNA binding sequences (SBS) that acts as a negative regulator of the division ring stability in Escherichia coli. To mimic the bacterial nucleoid as a dense DNA region of a bacterial cell and investigate the influence of charge and permeability on protein binding and diffusion in there, we have chosen nonionic polyethylene glycol and anionic hyaluronic acid as precursor materials for hydrogel formation, previously functionalized with SBS. SlmA binds specifically to the coupled SBS for both types of microgels while preferentially accumulating at the microgels' surface. We could control the binding specificity by adjusting the buffer composition of the DNA-functionalized microgels. The microgel charge did not impact protein binding; however, hyaluronic acid-based microgels exhibit a higher permeability, promoting protein diffusion; thus, they were the preferred choice for preparing nucleoid mimics. The approaches described here provide attractive tools for bottom-up reconstitution of essential cellular processes in media that more faithfully reproduce intracellular environments.


Assuntos
Proteínas de Escherichia coli , Microgéis , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Ácido Hialurônico/metabolismo , Polímeros/metabolismo , Escherichia coli/metabolismo , DNA/metabolismo
5.
Small ; 8(15): 2356-60, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22648761

RESUMO

Microgel particles are formed from aqueous-two-phase-system (ATPS) droplets in poly(dimethylsiloxane) (PDMS) microfluidic devices. The droplets consist of a dextran core and a photopolymerizable poly(ethylene glycol) diacrylate (PEGDA) shell. Upon UV exposure, the ATPS droplets undergo a shape-transformation yielding PEGDA microgel particles containing a socket.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Polímeros/química , Polimerização
6.
J Mater Chem B ; 10(10): 1663-1674, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35195648

RESUMO

The soft colloidal probe (SCP) assay is a highly versatile sensing principle employing micrometer-sized hydrogel particles as optomechanical transducer elements. We report the synthesis, optimization, and conjugation of SCPs with defined narrow size distribution and specifically tailored mechanical properties and functionalities for integration into a microinterferometric optomechanical biosensor platform. Droplet-based microfluidics was used to crosslink polyethylene glycol (PEG) macromonomers by photocrosslinking and thiol-Michael addition. The effect of several synthesis parameters, i.e. PEG and radical initiator solid content, molecular weight and architecture of macromonomers, as well as UV exposure time and energy, were examined. SCPs were characterized with regard to the conversion of contained functional groups, morphology and mechanical properties by bright-field, confocal laser scanning and reflection interference contrast microscopy, as well as force spectroscopy. Functional groups were introduced during SCP synthesis and by several post-synthesis procedures, based on photoradical grafting and thiol-Michael addition. Preparation of SCPs by thiol-Michael addition and subsequent coupling of maleimide derivatives to unreacted thiols proved to be the superior strategy, while other approaches were associated with changes in the properties of the SCP. The newly developed SCPs were tested for their sensing capabilities employing the biotin-streptavidin-system. Biotin detection in the range of 10-7 to 10-10 M verified the concept of the synthesis strategy and the advantage of using monodisperse SCPs for easier and faster sensing applications of the SCP assay.


Assuntos
Técnicas Biossensoriais , Hidrogéis , Biotina , Coloides , Microfluídica/métodos , Polietilenoglicóis/química , Compostos de Sulfidrila
7.
Langmuir ; 26(9): 6860-3, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20121049

RESUMO

We demonstrate that microfluidic flow devices enable a rapid, continuous, well-reproducible and size-controlled preparation of unilamellar block copolymer vesicles. The PDMS-based microfluidic device consists of perpendicularly crossed channels allowing hydrodynamic flow focusing of an ethanolic block copolymer solution in a stream of water. By altering the flow rate ratio in the water and ethanolic inlet channels, the vesicle size can be tuned over a large size range from 40 nm to 2 microm without subsequent processing steps manipulating size and shell characteristics. The ability of tuning the vesicle mean size over a range of several orders of magnitude with the possibility of in situ encapsulation of active ingredients creates new opportunities for the preparation of tailored drug delivery systems in science, medicine and industry.


Assuntos
Técnicas Analíticas Microfluídicas , Polímeros/química , Etanol/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Solubilidade , Temperatura
8.
Biomater Sci ; 8(1): 101-108, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31674601

RESUMO

Multiphasic in vitro models with cross-scale heterogeneity in matrix properties and/or cellular composition can reflect the structural and compositional complexity of living tissues more faithfully, thereby creating new options for pathobiology and drug development studies. Herein, a new class of tunable microgel-in-gel materials is reported that build on a versatile platform of multifunctional poly(ethylene glycol)-heparin gel types and integrates monodisperse, cell-laden microgels within cell-laden bulk hydrogel matrices. A novel microfluidic approach was developed to enable the high-throughput fabrication of microgels of in situ adjustable diameters, stiffness, degradability and biomolecular functionalization. By choosing structure and composition of the microgel and the bulk gel compartments independently, our microgel-in-gel arrangements provide cross-scale control over tissue-mimetic features and pave the way for culture systems with designed mesoenvironmental characteristics. The potentialities of the introduced approach are exemplarily shown by creating a reductionistic in vitro model of vascularized prostate cancer tissue.


Assuntos
Microgéis/química , Neoplasias da Próstata/patologia , Engenharia Tecidual/métodos , Humanos , Hidrogéis , Masculino , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Biológicos
9.
Lab Chip ; 16(1): 65-9, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26626826

RESUMO

In droplet-based microfluidics, non-ionic, high-molecular weight surfactants are required to stabilize droplet interfaces. One of the most common structures that imparts stability as well as biocompatibility to water-in-oil droplets is a triblock copolymer surfactant composed of perfluoropolyether (PFPE) and polyethylene glycol (PEG) blocks. However, the fast growing applications of microdroplets in biology would benefit from a larger choice of specialized surfactants. PEG as a hydrophilic moiety, however, is a very limited tool in surfactant modification as one can only vary the molecular weight and chain-end functionalization. In contrast, linear polyglycerol offers further side-chain functionalization to create custom-tailored, biocompatible droplet interfaces. Herein, we describe the synthesis and characterization of polyglycerol-based triblock surfactants with tailored side-chain composition, and exemplify their application in cell encapsulation and in vitro gene expression studies in droplet-based microfluidics.


Assuntos
Materiais Biocompatíveis/química , Éteres/química , Fluorocarbonos/química , Técnicas Analíticas Microfluídicas , Polietilenoglicóis/química , Tensoativos/química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Éteres/farmacologia , Fluorocarbonos/farmacologia , Células HeLa , Humanos , Células K562 , Técnicas Analíticas Microfluídicas/instrumentação , Estrutura Molecular , Peso Molecular , Tamanho da Partícula , Polietilenoglicóis/farmacologia , Propriedades de Superfície , Tensoativos/síntese química , Tensoativos/farmacologia , Células Tumorais Cultivadas
11.
Adv Mater ; 26(1): 125-47, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24227691

RESUMO

Cell culturing, whether for tissue engineering or cell biology studies, always involves placing cells in a non-natural environment and no material currently exist that can mimic the entire complexity of natural tissues and variety of cell-matrix interactions that is found in vivo. Here, we review the vast range of hydrogels, composed of natural or synthetic polymers that provide a route to tailored microenvironments.


Assuntos
Técnicas de Cultura de Células , Hidrogéis/química , Animais , Materiais Biocompatíveis/química , Humanos , Microtecnologia/métodos , Polímeros/química
12.
Chem Commun (Camb) ; 50(1): 112-4, 2014 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-24217172

RESUMO

A series of water-soluble macro-initiators is synthesized to avoid radical loss in microfluidic on-chip photo cross-linking of hyaluronic acid methacrylate-containing water-in-oil emulsions. Their superior performance over known photo-initiators through the generation of water-soluble radicals and excellent biocompatibility are demonstrated.


Assuntos
Materiais Biocompatíveis/química , Radicais Livres/química , Técnicas Analíticas Microfluídicas , Óleos/química , Processos Fotoquímicos , Polimerização , Água/química , Emulsões
13.
Lab Chip ; 11(18): 3188-92, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21796282

RESUMO

Double emulsions are valuable structures that consist of drops nested inside bigger drops; they can be formed with exquisite control through the use of droplet-based microfluidics, allowing their size, composition, and monodispersity to be tailored. However, only little control can be exerted on the morphology of double emulsions in their equilibrium state, because they are deformable and subject to thermal fluctuations. To introduce such control, we use droplet-based microfluidics to form oil-in-water-in-oil double emulsion drops and arrest their shape by loading them with monodisperse microgel particles. These particles push the inner oil drop to the edge of the aqueous shell drop such that the double emulsions adopt a uniform arrested, anisotropic shape. This approach circumvents the need for ultrafast polymerization or geometric confinement to lock such non-spherical and anisotropic droplet morphologies. To demonstrate the utility of this technique, we apply it to synthesize anisotropic and non-spherical polyacrylate-polyacrylamide microparticles with controlled size and shape.


Assuntos
Emulsões/química , Técnicas Analíticas Microfluídicas/instrumentação , Microesferas , Óleos/química , Água/química , Resinas Acrílicas , Anisotropia , Desenho de Equipamento , Géis , Microscopia Eletrônica de Varredura , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA