Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144706

RESUMO

As a biocompatible biomaterial, bagasse xylan (BX) has been widely used in the biomedical field. The low biological activity of andrographolide (AD) restricts its development, so AD with certain anticancer activity is introduced. We use chemical modification methods such as grafting and esterification to improve the biological activity and make a novel anticancer nanomaterial. On the basis of the esterification of a mixture of BX and AD with folic acid (FA), a novel anticancer nanoderivative of bagasse xylan/andrographolide folate-g-dimethylaminoethyl methacrylate (DMAEMA)/diethylene glycol dimethacrylate (DEGDMA) nanoparticles (FA-BX/AD-g-DMAEMA/DEGDMA NPs) was synthesized by introducing DMAEMA and DEGDMA monomers through a graft copolymerization and nanoprecipitation method. The effects of reaction temperature, reaction time, the initiator concentration and the mass ratio of FA-BX/AD to mixed monomers on the grafting rate (GR) were investigated. The structure of the obtained product was characterized by FTIR, SEM, XRD and DTG. Further, molecular docking and MTT assays were performed to understand the possible docking sites with the target proteins and the anticancer activity of the product. The results showed that the GR of the obtained product was 79% under the conditions of the initiator concentration 55 mmol/L, m (FA-BX/AD):m (mixed monomer) = 1:2, reaction temperature 50 °C and reaction time 5 h. The inhibition rate of FA-BX/AD-g-DMAEMA/DEGDMA NPs on human lung cancer cells (NCI-H460) can reach 39.77 ± 5.62%, which is about 7.6 times higher than that of BX. Therefore, this material may have potential applications in the development of anticancer drug or carriers and functional materials.


Assuntos
Antineoplásicos , Nanopartículas , Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Celulose , Diterpenos , Portadores de Fármacos , Etilenoglicóis , Ácido Fólico/química , Humanos , Metacrilatos/química , Simulação de Acoplamento Molecular , Nanopartículas/química , Xilanos/farmacologia
2.
Eur J Pharm Biopharm ; 198: 114269, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527635

RESUMO

Sucrose esters (SEs) have great potential in the field of nucleic acid delivery due to their unique physical and chemical properties and good biosafety. However, the mechanism of the effect of SEs structure on delivery efficiency has not been studied. The liposomes containing peptide lipids and SEs were constructed, and the effects of SEs on the interaction between the liposomes and DNA were studied. The addition of SEs affects the binding rate of liposomes to DNA, and the binding rate gradually decreases with the increase of SEs' carbon chain length. SEs also affect the binding site and affinity of liposomes to DNA, promoting the aggregation of lipids to form liposomes, where DNA wraps around or compresses inside the liposomes, allowing it to compress DNA without damaging the DNA structure. COL-6, which is composed of sucrose laurate, exhibits the optimal affinity for DNA, and SE promotes the formation of ordered membrane structure and enhances membrane stability, so that COL-6 exhibits a balance between rigidity and flexibility, and thus exhibits the highest delivery efficiency of DNA among these formulations. This work provides theoretical foundations for the application of SE in gene delivery and guides for the rational design of delivery systems.


Assuntos
Ésteres , Lipossomos , Lipossomos/química , Ésteres/química , DNA/metabolismo , Sacarose/química , Lipídeos/química
3.
Int J Biol Macromol ; 253(Pt 3): 126867, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37730005

RESUMO

A crucial aspect in achieving sustainable development of biomass materials is the modification of renewable polysaccharides to create various high-value functional materials. In this paper, bagasse xylan (BX) was used as a raw material to introduce benzyl methacrylate (BMA) through graft copolymerization reaction to generate the intermediate product BX-g-BMA. Subsequently, the target product (CA-BX-g-BMA) was synthesized by catalytic esterification of BX-g-BMA with citric acid (CA) in AmimCl ionic liquid. Meanwhile, the characterization and bioactivity studies of CA-BX-g-BMA were carried out. The graft copolymerization and esterification reactions induced significant changes in the morphological structure of BX and obviously improved its thermal stability and crystallinity. The application of density functional theory (DFT), molecular electrostatic potential (MEP) and molecular docking has revealed that CA-BX-g-BMA possesses multiple active sites, strong biological activity and a strong binding affinity to 6RCF tumor protein with a binding energy of -32.26 kJ/mol. The in vitro antitumor activity of this novel derivative was tested by MTT assay, and the results showed that CA-BX-g-BMA was non-toxic to normal cells and inhibited MDA-MB-231 (breast cancer cells) by up to 32.16 % ± 4.89 %, which is approximately 11 times higher than that of BX. The exploration of these properties is essential to promote future multidisciplinary applications of BX derivatives.


Assuntos
Celulose , Xilanos , Xilanos/farmacologia , Xilanos/química , Esterificação , Simulação de Acoplamento Molecular , Celulose/química , Ácido Cítrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA