Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 281: 116683, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964061

RESUMO

Soil pollution by microplastics (MPs), defined as plastic particles <5 mm, and heavy metals is a significant environmental issue. However, studies on the co-contamination effects of MPs and heavy metals on buckwheat rhizosphere microorganisms, especially on the arbuscular mycorrhizal fungi (AMF) community, are limited. We introduced low (0.01 g kg-1) and high doses of lead (Pb) (2 g kg-1) along with polyethylene (PE) and polylactic acid (PLA) MPs, both individually and in combination, into soil and assessed soil properties, buckwheat growth, and rhizosphere bacterial and AMF communities in a 40-day pot experiment. Notable alterations were observed in soil properties such as pH, alkaline hydrolyzable nitrogen (AN), and the available Pb (APb). High-dose Pb combined with PLA-MPs hindered buckwheat growth. Compared to the control, bacterial Chao1 richness and Shannon diversity were lower in the high dose Pb with PLA treatment, and differentially abundant bacteria were mainly detected in the high Pb dose treatments. Variations in bacterial communities correlated with APb, pH and AN. Overall, the AMF community composition remained largely consistent across all treatments. This phenomenon may be due to fungi having lower nutritional demands than bacteria. Stochastic processes played a relatively important role in the assembly of both bacterial and AMF communities. In summary, MPs appeared to amplify both the positive and negative effects of high Pb doses on the buckwheat rhizosphere bacteria.


Assuntos
Fagopyrum , Chumbo , Microplásticos , Micorrizas , Rizosfera , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Micorrizas/efeitos dos fármacos , Chumbo/toxicidade , Microplásticos/toxicidade , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Solo/química
2.
Sci Total Environ ; 899: 165587, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467981

RESUMO

The ubiquity of microplastic is widely recognized as pollution. Microplastic can affect the growth performances of plants. Buckwheat is a potential model crop to investigate plant responses to hazardous materials. Still, little is known about the response of buckwheat to microplastics. Thus, this study investigated the effect and uptake of polyethylene (PE) in buckwheat plant growth by monitoring the morphological and photosynthetic merits, antioxidant systems and transcriptome analysis of gene expression. Results confirmed that the impacts of PE on buckwheat growth were dose-dependent, while the highest concentration (80 mg/L) exposure elicited significantly negative responses of buckwheat. PE can invade buckwheat roots and locate in the vascular tissues. PE exposure disturbed the processes of carbon fixation and the synthesis of ATP from ADP + Pi in buckwheat leaves. The promotion of photosynthesis under PE exposure could generate extra energy for buckwheat leaves to activate antioxidant systems by increasing the antioxidant enzyme activities at an expense of morphological merits under microplastic stresses. Further in-depth study is warranted about figuring out the interactions between microplastics and biochemical responses (i.e., photosynthesis and antioxidant systems), which have great implications for deciphering the defense mechanism of buckwheat to microplastic stresses.


Assuntos
Fagopyrum , Microplásticos , Microplásticos/metabolismo , Plásticos/análise , Polietileno/análise , Transcriptoma , Fagopyrum/metabolismo , Antioxidantes/metabolismo , Perfilação da Expressão Gênica
3.
Chemosphere ; 337: 139356, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37379973

RESUMO

Microplastics (MPs) and heavy metals are common, often co-existing pollutants, that threaten crop growth and productivity worldwide. We analysed the adsorption of lead ions (Pb2+) to polylactic acid MPs (PLA-MPs) and their single factor and combined effects on tartary buckwheat (Fagopyrum tataricum L. Gaertn.) in hydroponics by measuring changes in the growth characteristics, antioxidant enzyme activities and Pb2+ uptake of buckwheat in response to PLA-MPs and Pb2+. PLA-MPs adsorbed Pb2+, and the better fitting second-order adsorption model implied that Pb2+ was adsorbed by chemisorption. However, the similar Pb2+ contents in the plants treated with Pb2+ only and those treated with the combined PLA-MPs-Pb2+ suggested that the adsorption played no role in the uptake of Pb2+. Low concentrations of PLA-MPs promoted shoot length. At high concentrations of both PLA-MPs and Pb2+, buckwheat growth was inhibited, and leaf peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) activities and malondialdehyde (MDA) contents were higher than in the control. No significant differences were observed in seedling growth between exposure to Pb2+ only and combined exposure to PLA-MPs with Pb2+, implying that PLA-MPs did not increase the toxicity of Pb2+ at macroscopic level. POD activity was higher and chlorophyll content was lower with PLA-MPs in the low Pb2+ dose treatments, suggesting that PLA-MPs may increase the toxicity of naturally occurring Pb2+. However, the conclusions must be verified in controlled experiments in natural soil conditions over the whole cultivation period of buckwheat.


Assuntos
Fagopyrum , Microplásticos , Plásticos/toxicidade , Chumbo/toxicidade , Poliésteres/toxicidade , Antioxidantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA