Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Molecules ; 25(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486282

RESUMO

A series of model polyelectrolyte complex micelles (PCMs) was prepared to investigate the consequences of neutral and zwitterionic chemistries and distinct charged cores on the size and stability of nanocarriers. Using aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization, we synthesized a well-defined diblock polyelectrolyte system, poly(2-methacryloyloxyethyl phosphorylcholine methacrylate)-block-poly((vinylbenzyl) trimethylammonium) (PMPC-PVBTMA), at various neutral and charged block lengths to compare directly against PCM structure-property relationships centered on poly(ethylene glycol)-block-poly((vinylbenzyl) trimethylammonium) (PEG-PVBTMA) and poly(ethylene glycol)-block-poly(l-lysine) (PEG-PLK). After complexation with a common polyanion, poly(sodium acrylate), the resulting PCMs were characterized by dynamic light scattering (DLS) and small angle X-ray scattering (SAXS). We observed uniform assemblies of spherical micelles with a diameter ~1.5-2× larger when PMPC-PVBTMA was used compared to PEG-PLK and PEG-PVBTMA via SAXS and DLS. In addition, PEG-PLK PCMs proved most resistant to dissolution by both monovalent and divalent salt, followed by PEG-PVBTMA then PMPC-PVBTMA. All micelle systems were serum stable in 100% fetal bovine serum over the course of 8 h by time-resolved DLS, demonstrating minimal interactions with serum proteins and potential as in vivo drug delivery vehicles. This thorough study of the synthesis, assembly, and characterization of zwitterionic polymers in PCMs advances the design space for charge-driven micelle assemblies.


Assuntos
Polieletrólitos/química , Polietilenoglicóis/química , Polímeros/química , Difusão Dinâmica da Luz , Micelas , Espalhamento a Baixo Ângulo , Difração de Raios X
2.
Nano Lett ; 18(11): 7111-7117, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30339032

RESUMO

Polyelectrolyte complex micelles (PCMs), nanoparticles formed by electrostatic self-assembly of charged polymers with charged-neutral hydrophilic block copolymers, offer a potential solution to the challenging problem of delivering therapeutic nucleic acids into cells and organisms. Promising results have been reported in vitro and in animal models but basic structure-property relationships are largely lacking, and some reports have suggested that double-stranded nucleic acids cannot form PCMs due to their high bending rigidity. This letter reports a study of PCMs formed by DNA oligonucleotides of varied length and hybridization state and poly(l)lysine-poly(ethylene glycol) block copolymers with varying block lengths. We employ a multimodal characterization strategy combining small-angle X-ray scattering (SAXS), multiangle light scattering (MALS), and cryo-electron microscopy (cryo-TEM) to simultaneously probe the morphology and internal structure of the micelles. Over a wide range of parameters, we find that nanoparticle shape is controlled primarily by the hybridization state of the oligonucleotides with single-stranded oligonucleotides forming spheroidal micelles and double-stranded oligonucleotides forming wormlike micelles. The length of the charged block controls the radius of the nanoparticle, while oligonucleotide length appears to have little impact on either size or shape. At smaller length scales, we observe parallel packing of DNA helices inside the double-stranded nanoparticles, consistent with results from condensed genomic DNA. We also describe salt- and thermal-annealing protocols for preparing PCMs with high repeatability and low polydispersity. Together, these results provide a capability to rationally design PCMs with desired sizes and shapes that should greatly assist development of this promising delivery technology.


Assuntos
Micelas , Nanopartículas/química , Oligonucleotídeos/química , Polieletrólitos/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Polietilenoglicóis/química , Polilisina/química , Relação Estrutura-Atividade
3.
Sci Adv ; 10(34): eadn9657, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39167649

RESUMO

Membraneless coacervate microdroplets have long been proposed as model protocells as they can grow, divide, and concentrate RNA by natural partitioning. However, the rapid exchange of RNA between these compartments, along with their rapid fusion, both within minutes, means that individual droplets would be unable to maintain their separate genetic identities. Hence, Darwinian evolution would not be possible, and the population would be vulnerable to collapse due to the rapid spread of parasitic RNAs. In this study, we show that distilled water, mimicking rain/freshwater, leads to the formation of electrostatic crosslinks on the interface of coacervate droplets that not only suppress droplet fusion indefinitely but also allow the spatiotemporal compartmentalization of RNA on a timescale of days depending on the length and structure of RNA. We suggest that these nonfusing membraneless droplets could potentially act as protocells with the capacity to evolve compartmentalized ribozymes in prebiotic environments.


Assuntos
Células Artificiais , Chuva , Células Artificiais/química , RNA/química , Água/química
5.
J Am Chem Soc ; 134(28): 11807-14, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22731391

RESUMO

Despite increasing demands to employ amphiphilic micelles as nanocarriers and nanoreactors, it remains a significant challenge to simultaneously reduce the particle size and enhance the particle stability. Complementary to covalent chemical bonding and attractive intermolecular interactions, entropic repulsion can be incorporated by rational design in the headgroup of an amphiphile to generate small micelles with enhanced stability. A new family of amphiphilic peptide-polymer conjugates is presented where the hydrophilic headgroup is composed of a 3-helix coiled coil with poly(ethylene glycol) attached to the exterior of the helix bundle. When micelles form, the PEG chains are confined in close proximity and are compressed to act as a spring to generate lateral pressure. The formation of 3-helix bundles determines the location and the directionalities of the force vector of each PEG elastic spring so as to slow down amphiphile desorption. Since each component of the amphiphile can be readily tailored, these micelles provide numerous opportunities to meet current demands for organic nanocarriers with tunable stability in life science and energy science. Furthermore, present studies open new avenues to use energy arising from entropic polymer chain deformation to self-assemble energetically stable, single nanoscopic objects, much like repulsion that stabilizes bulk assemblies of colloidal particles.


Assuntos
Micelas , Sequência de Aminoácidos , Dicroísmo Circular , Fluoresceína/química , Transferência Ressonante de Energia de Fluorescência , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Nanoestruturas , Peptídeos/química , Polietilenoglicóis/química , Espalhamento a Baixo Ângulo , Difração de Raios X
6.
Mol Pharm ; 9(10): 2950-5, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22953784

RESUMO

Described are photochemical studies of the nitric oxide precursors, trans-Cr(L)(ONO)(2)(+) (L = cyclam = 1,4,8,11-tetraazacyclotetradecane, CrONO, or L = mac = 5,7-dimethyl-6-anthracenylcyclam, mac-CrONO) encapsulated in phosphatidylcholine liposomes. The liposomes provide a means to maintain a localized high concentration of NO releasing complexes and are easily modified for in vivo targeting through self-assembly. Steady, controlled release of NO is seen after photolysis of the liposome-encapsulated CrONO as compared to the burst of NO release seen by the unencapsulated complex in oxygenated solutions. The quantum yields for photochemical NO release from liposome-encapsulated CrONO and mac-CrONO were determined in both oxygenated and anoxic solutions. The quantum yield for NO release in oxygenated solution for encapsulated CrONO was more than 5 times larger than that of unencapsulated CrONO, thus the net NO released after photolysis in oxygenated solutions is enhanced by encapsulation of CrONO in liposomes. Encapsulated mac-CrONO shows NO release after photolysis with low-intensity blue light. Furthermore, the fluorescence of mac-CrONO can be detected through the liposomes, thus allowing for development of theranostic NO delivery vessels where tracking and imaging can occur simultaneously with therapeutic NO release. This work provides insight into the development of multifunctional liposome constructs for disease theranostics.


Assuntos
Portadores de Fármacos/química , Compostos Heterocíclicos/química , Lipossomos/química , Óxido Nítrico/química , Preparações de Ação Retardada/química , Fluorescência , Fosfatidilcolinas/química , Fotólise , Soluções/química
7.
Nano Lett ; 11(9): 3946-50, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21800917

RESUMO

Self-assembling peptide amphiphiles (PAs) have been extensively used in the development of novel biomaterials. Because of their propensity to form cylindrical micelles, their use is limited in applications where small spherical micelles are desired. Here we present a platform method for controlling the self-assembly of biofunctional PAs into spherical 50 nm particles using dendrimers as shape-directing scaffolds. This templating approach results in biocompatible, stable protein-like assemblies displaying peptides with native secondary structure and biofunctionality.


Assuntos
Nanosferas/química , Nanotecnologia/métodos , Peptídeos/química , Materiais Biocompatíveis/química , Biomimética , Dendrímeros/química , Células HeLa , Humanos , Micelas , Estrutura Secundária de Proteína , Proteínas/química
8.
J Vis Exp ; (157)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32176210

RESUMO

Polyelectrolyte complex micelles (PCMs), core-shell nanoparticles formed by self-assembly of charged polymers in aqueous solution, provide a powerful platform for exploring the physics of polyelectrolyte interactions and also offer a promising solution to the pressing problem of delivering therapeutic oligonucleotides in vivo. Developing predictive structure-property relationships for PCMs has proven difficult, in part due to the presence of strong kinetic traps during nanoparticle self-assembly. This article discusses criteria for choosing polymers for PCM construction and provides protocols based on salt annealing that enable assembly of repeatable, low-polydispersity nanoparticles. We also discuss PCM characterization using light scattering, small-angle X-ray scattering, and electron microscopy.


Assuntos
Micelas , Nanopartículas , Polieletrólitos , Cinética , Oligonucleotídeos , Polímeros
9.
PDA J Pharm Sci Technol ; 72(1): 35-43, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28928291

RESUMO

For many years, glass has been the default material for parenteral packaging, but the development of advanced plastics such as cyclic olefin polymers and the rapidly increasing importance of biologic drugs have provided new choices, as well as more stringent performance requirements. In particular, many biologics must be stored at non-neutral pH, where glass is susceptible to hydrolysis, metal extraction, and delamination. Plastic containers are not susceptible to these problems, but suffer from higher gas permeability and a propensity for sterilization-induced radical generation, heightening the risk of oxidative damage to sensitive drugs. This study evaluates the properties of a hybrid material, SiOPlas™, in which an ultrathin multilayer coating is applied to the interior of cyclic olefin polymer containers via plasma-enhanced chemical vapor deposition. Our results show that the coating decreases oxygen permeation through the vial walls 33-fold compared to uncoated cyclic olefin polymers, which should allow for improved control of oxygen levels in sensitive formulations. We also measured degradation of two biologic drugs that are known to be sensitive to oxidation, teriparatide and erythropoietin, in gamma and electron beam sterilized SiOPlas™, glass, and uncoated cyclic olefin polymer vials. In both cases, solutions stored in SiOPlas™ vials did not show elevated susceptibility to oxidation compared to either glass or unsterilized controls. Taken together, these results suggest that hybrid materials such as SiOPlas™ are attractive choices for storing high-value biologic drugs.LAY ABSTRACT: One of the most important functions of parenteral drug containers is safeguarding their contents from damage, either chemical or physical. Glass has been the container material of choice for many years, but concerns over breakage and vulnerability to chemical attack at non-neutral pH have spurred the rise of advanced plastics as alternatives. Plastics solve many problems associated with glass but introduce several of their own, including increased gas permeation and generation of oxidizing radicals during sterilization. In this article, we evaluate SiOPlas™, a hybrid material consisting of plastic with a thin multilayer coating applied to the interior, for its ability to overcome these two problems. We find that SiOPlas™ is much less permeable to oxygen than uncoated plastic, and that two biologic drugs stored in gamma and electron beam sterilized SiOPlas™ vials do not display elevated levels of oxidation compared to either glass or unsterilized vials. This suggests that hybrid materials such as SiOPlas™ can exhibit the best qualities of both glass and plastic, making them attractive materials for storing high-value parenteral drugs.


Assuntos
Embalagem de Medicamentos/normas , Preparações Farmacêuticas/normas , Esterilização , Eritropoetina/química , Humanos , Infusões Parenterais , Oxirredução , Preparações Farmacêuticas/química , Plásticos , Teriparatida/química
10.
Tissue Eng Part A ; 21(7-8): 1333-42, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25626921

RESUMO

Peripheral nerve injury is a debilitating condition for which new bioengineering solutions are needed. Autografting, the gold standard in treatment, involves sacrifice of a healthy nerve and results in loss of sensation or function at the donor site. One alternative solution to autografting is to use a nerve guide conduit designed to physically guide the nerve as it regenerates across the injury gap. Such conduits are effective for short gap injuries, but fail to surpass autografting in long gap injuries. One strategy to enhance regeneration inside conduits in long gap injuries is to fill the guide conduits with a hydrogel to mimic the native extracellular matrix found in peripheral nerves. In this work, a peptide amphiphile (PA)-based hydrogel was optimized for peripheral nerve repair. Hydrogels consisting of the PA C16GSH were compared with a commercially available collagen gel. Schwann cells, a cell type important in the peripheral nerve regenerative cascade, were able to spread, proliferate, and migrate better on C16GSH gels in vitro when compared with cells seeded on collagen gels. Moreover, C16GSH gels were implanted subcutaneously in a murine model and were found to be biocompatible, degrade over time, and support angiogenesis without causing inflammation or a foreign body immune response. Taken together, these results help optimize and instruct the development of a new synthetic hydrogel as a luminal filler for conduit-mediated peripheral nerve repair.


Assuntos
Materiais Biocompatíveis/farmacologia , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Regeneração Nervosa/fisiologia , Peptídeos/farmacologia , Nervos Periféricos/fisiologia , Tensoativos/farmacologia , Animais , Formação de Anticorpos/efeitos dos fármacos , Bovinos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/farmacologia , Feminino , Géis/farmacologia , Teste de Materiais , Fenômenos Mecânicos/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Regeneração Nervosa/efeitos dos fármacos , Peptídeos/química , Nervos Periféricos/efeitos dos fármacos , Ratos , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/ultraestrutura , Tensoativos/química
11.
Biopolymers ; 69(3): 283-92, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12833255

RESUMO

We have used synthetic lipidated peptides ("peptide-amphiphiles") to study the structure and function of isolated domains of integral transmembrane proteins. We used 9-fluorenylmethyloxycarbonyl (Fmoc) solid-phase peptide synthesis to prepare full-length phospholamban (PLB(1-52)) and its cytoplasmic (PLB(1-25)K: phospholamban residues 1-25 plus a C-terminal lysine), and transmembrane (PLB(26-52)) domains, and a 38-residue model alpha-helical sequence as a control. We created peptide-amphiphiles by linking the C-terminus of either the isolated cytoplasmic domain or the model peptide to a membrane-anchoring, lipid-like hydrocarbon tail. Circular dichroism measurements showed that the model peptide-amphiphile, either in aqueous suspension or in lipid bilayers, had a higher degree of alpha-helical secondary structure than the unlipidated model peptide. We hypothesized that the peptide-amphiphile system would allow us to study the function and structure of the PLB(1-25)K cytoplasmic domain in a native-like configuration. We compared the function (inhibition of the Ca-ATPase in reconstituted membranes) and structure (via CD) of the PLB(1-25) amphiphile to that of PLB and its isolated transmembrane and cytoplasmic domains. Our results indicate that the cytoplasmic domain PLB(1-25)K has no effect on Ca-ATPase (calcium pump) activity, even when tethered to the membrane in a manner mimicking its native configuration, and that the transmembrane domain of PLB is sufficient for inhibition of the Ca-ATPase.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Peptídeos/química , Soluções Tampão , Proteínas de Ligação ao Cálcio/síntese química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Lipídeos/química , Lipossomos , Proteínas de Membrana/síntese química , Peptídeos/síntese química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA