Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 17(12): 7951-7961, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29148804

RESUMO

The engineering of living plants for visible light emission and sustainable illumination is compelling because plants possess independent energy generation and storage mechanisms and autonomous self-repair. Herein, we demonstrate a plant nanobionic approach that enables exceptional luminosity and lifetime utilizing four chemically interacting nanoparticles, including firefly luciferase conjugated silica (SNP-Luc), d-luciferin releasing poly(lactic-co-glycolic acid) (PLGA-LH2), coenzyme A functionalized chitosan (CS-CoA) and semiconductor nanocrystal phosphors for longer wavelength modulation. An in vitro kinetic model incorporating the release rates of the nanoparticles is developed to maximize the chemiluminescent lifetimes to exceed 21.5 h. In watercress (Nasturtium officinale) and other species, the nanoparticles circumvent limitations such as luciferin toxicity above 400 µM and colocalization of enzymatic reactions near high adenosine triphosphate (ATP) production. Pressurized bath infusion of nanoparticles (PBIN) is introduced to deliver a mixture of nanoparticles to the entire living plant, well described using a nanofluidic mathematical model. We rationally design nanoparticle size and charge to control localization within distinct tissues compartments with 10 nm nanoparticles localizing within the leaf mesophyll and stomata guard cells, and those larger than 100 nm segregated in the leaf mesophyll. The results are mature watercress plants that emit greater than 1.44 × 1012 photons/sec or 50% of 1 µW commercial luminescent diodes and modulate "off" and "on" states by chemical addition of dehydroluciferin and coenzyme A, respectively. We show that CdSe nanocrystals can shift the chemiluminescent emission to 760 nm enabling near-infrared (nIR) signaling. These results advance the viability of nanobionic plants as self-powered photonics, direct and indirect light sources.


Assuntos
Brassicaceae/metabolismo , Substâncias Luminescentes/química , Nanopartículas/química , Nasturtium/metabolismo , Spinacia oleracea/metabolismo , Brassicaceae/química , Compostos de Cádmio/química , Compostos de Cádmio/metabolismo , Quitosana/análogos & derivados , Quitosana/química , Quitosana/metabolismo , Coenzima A/química , Coenzima A/metabolismo , Luciferina de Vaga-Lumes/química , Luciferina de Vaga-Lumes/metabolismo , Luz , Luciferases/química , Luciferases/metabolismo , Luminescência , Substâncias Luminescentes/metabolismo , Nasturtium/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Radiação , Compostos de Selênio/química , Compostos de Selênio/metabolismo , Spinacia oleracea/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA