Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Exp Eye Res ; 113: 32-40, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23680159

RESUMO

Aquaporin-0 (AQP0), the primary water channel in lens fiber cells, is critical to lens development, organization, and function. In the avascular lens there is thought to be an internal microcirculation associated with fluid movement. Although AQP0 is known to be important in fluid fluxes across membranes, the water permeability of this channel has only been measured in Xenopus oocytes and in outer lens cortical membranes, but not in inner nuclear membranes, which have an increased cholesterol/phospholipid ratio. Here we measure the unit water permeability of AQP0 in different proteoliposomes with cholesterol/phospholipid ratios and external pHs similar to those found in the cortex and nucleus of the lens. Osmotic stress measurements were performed with proteoliposomes containing AQP0 and three different lipids mixtures: (1) phosphatidylcholine (PC) and phosphatidylglycerol (PG), (2) PC, PG, with 40 mol% cholesterol, and (3) sphingomyelin (SM), PG, with 40 mol% cholesterol. At pH 7.5 the unit permeabilities of AQP0 were 3.5 ± 0.5 × 10(-14) cm(3)/s (mean ± SEM), 1.1 ± 0.1 × 10(-14) cm(3)/s, and 0.50 ± 0.04 × 10(-14) cm(3)/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. For lipid mixtures at pH 6.5, corresponding to conditions found in the lens nucleus, the AQP0 permeabilities were 1.5 ± 0.4 × 10(-14) cm(3)/s and 0.76 ± 0.03 × 10(-14) cm(3)/s in PC:PG:cholesterol and SM:PG:cholesterol, respectively. Thus, although AQP0 unit permeability can be modified by changes in pH, it is also sensitive to changes in bilayer lipid composition, and decreases with increasing cholesterol and SM content. These data imply that AQP0 water permeability is regulated by bilayer lipid composition, so that AQP0 permeability would be significantly less in the lens nucleus than in the lens cortex.


Assuntos
Aquaporinas/metabolismo , Proteínas do Olho/metabolismo , Cristalino/metabolismo , Bicamadas Lipídicas/química , Proteolipídeos/metabolismo , Água/metabolismo , Animais , Bovinos , Permeabilidade da Membrana Celular , Colesterol/química , Concentração de Íons de Hidrogênio , Lipossomos/química , Lipossomos/metabolismo , Osmose , Permeabilidade , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Proteolipídeos/química , Esfingomielinas/química
2.
Biophys J ; 103(9): 1899-908, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23199918

RESUMO

Aquaporin-4 (AQP4) is the primary water channel in the mammalian brain, particularly abundant in astrocytes, whose plasma membranes normally contain high concentrations of cholesterol. Here we test the hypothesis that the water permeabilities of two naturally occurring isoforms (AQP4-M1 and AQP4-M23) depend on bilayer mechanical/structural properties modulated by cholesterol and phospholipid composition. Osmotic stress measurements were performed with proteoliposomes containing AQP4 and three different lipid mixtures: 1), phosphatidylcholine (PC) and phosphatidylglycerol (PG); 2), PC, PG, with 40 mol % cholesterol; and 3), sphingomyelin (SM), PG, with 40 mol % cholesterol. The unit permeabilities of AQP4-M1 were 3.3 ± 0.4 × 10(-13) cm(3)/s (mean ± SE), 1.2 ± 0.1 × 10(-13) cm(3)/s, and 0.4 ± 0.1 × 10(-13) cm(3)/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. The unit permeabilities of AQP4-M23 were 2.1 ± 0.2 × 10(-13) cm(3)/s, 0.8 ± 0.1 × 10(-13) cm(3)/s, and 0.3 ± 0.1 × 10(-13) cm(3)/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. Thus, for each isoform the unit permeabilities strongly depended on bilayer composition and systematically decreased with increasing bilayer compressibility modulus and bilayer thickness. These observations suggest that altering lipid environment provides a means of regulating water channel permeability. Such permeability changes could have physiological consequences, because AQP4 water permeability would be reduced by its sequestration into SM:cholesterol-enriched raft microdomains. Conversely, under ischemic conditions astrocyte membrane cholesterol content decreases, which could increase AQP4 permeability.


Assuntos
Aquaporina 4/metabolismo , Lipossomos/química , Água/metabolismo , Animais , Colesterol/química , Elasticidade , Osmose , Permeabilidade , Fosfatidilgliceróis/química , Isoformas de Proteínas/metabolismo , Ratos , Saccharomyces cerevisiae/metabolismo , Esfingomielinas/química
3.
Biophys J ; 94(1): 125-33, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17827240

RESUMO

The lipid phosphatidylinositol 4,5-bisphosphate (PIP(2)) is critical for a number of physiological functions, and its presence in membrane microdomains (rafts) appears to be important for several of these spatially localized events. However, lipids like PIP(2) that contain polyunsaturated hydrocarbon chains are usually excluded from rafts, which are enriched in phospholipids (such as sphingomyelin) containing saturated or monounsaturated chains. Here we tested a mechanism by which multivalent PIP(2) molecules could be transferred into rafts through electrostatic interactions with polybasic cytoplasmic proteins, such as GAP-43, which bind to rafts via their acylated N-termini. We analyzed the interactions between lipid membranes containing raft microdomains and a peptide (GAP-43P) containing the linked N-terminus and the basic effector domain of GAP-43. In the absence or presence of nonacylated GAP-43P, PIP(2) was found primarily in detergent-soluble membranes thought to correspond to nonraft microdomains. However, when GAP-43P was acylated by palmitoyl coenzyme A, both the peptide and PIP(2) were greatly enriched in detergent-resistant membranes that correspond to rafts; acylation of GAP-43P changed the free energy of transfer of PIP(2) from detergent-soluble membranes to detergent-resistant membranes by -1.3 kcal/mol. Confocal microscopy of intact giant unilamellar vesicles verified that in the absence of GAP-43P PIP(2) was in nonraft microdomains, whereas acylated GAP-43P laterally sequestered PIP(2) into rafts. These data indicate that sequestration of PIP(2) to raft microdomains could involve interactions with acylated basic proteins such as GAP-43.


Assuntos
Proteína GAP-43/química , Microdomínios da Membrana/química , Fosfatidilinositol 4,5-Difosfato/química , Lipossomas Unilamelares/química , Ligação Proteica
4.
Faraday Discuss ; 161: 515-34; discussion 563-89, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23805756

RESUMO

This paper describes how we have used material science, physical chemistry, and some luck, to design a new thermal-sensitive liposome (the low temperature sensitive liposome (LTSL)) that responds at clinically attainable hyperthermic temperatures releasing its drug in a matter of seconds as it passes through the microvasculature of a warmed tumor. The LTSL is composed of a judicial combination of three component lipids, each with a specific function and each affecting specific material properties, including a sharp thermal transition and a rapid on-set of membrane permeability to small ions, drugs and small dextran polymers. Experimentally, the paper describes how bilayer-concentration changes involving the lysolipid and the presence or absence of DSPE-PEG2000 affect both the lipid transition temperature and the drug release. While the inclusion of 4 mol% DSPE-PEG2000 raises the transition temperature peak (T(m)) by about 1 degrees C, the inclusion of 5.0, 9.7, 12.7 and 18.0 mol% MSPC slightly lowered this peak back to 41.7 degrees C, while not further broadening the peak breadth. As for drug release, in the absence of MSPC, the encapsulated doxorubicin-citrate is hardly released at all. Increasing the composition of MSPC in the lipid mixture (5.0, 7.4, 8.5 and 9.3 mol% MSPC) shows faster and faster initial doxorubicin release rates, with 8.5 and 9.3 mol% MSPC formulations giving 80% of encapsulated drug released in 4 and 3 min, respectively. The Thermodox formulation (9.7 mol% MSPC) gives 60% released in the first 20 s. The presence of PEG-lipid is found to be essential in order for the lysolipid-induced permeability to reach these very fast times. From drug and dextran release experiments, and estimates of the molecular and pore size, the conclusions are that: in order to induce lasting nanopores in lipid bilayers -10 nm diameter, they initially require the presence (from the solid phase structure) of grain boundary defects at the DPPC transition and the permeabilizing component(s) can either be a pore forming lysolipid/surfactant plus a PEG-lipid, or can be generated by a PEG-surfactant incorporated at -4-5 mol%. The final discussion is centered around the postulated defect structures that result in membrane leakage and the permeability of doxorubicin and H+ ions.


Assuntos
Antibióticos Antineoplásicos/química , Doxorrubicina/química , Lipossomos/química , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Antibióticos Antineoplásicos/farmacocinética , Dextranos/química , Doxorrubicina/farmacocinética , Sistemas de Liberação de Medicamentos , Bicamadas Lipídicas/química , Permeabilidade , Temperatura
5.
Biophys J ; 86(6): 3759-71, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15189872

RESUMO

Lipopolysaccharide (LPS), the major lipid on the surface of Gram-negative bacteria, plays a key role in bacterial resistance to hydrophobic antibiotics and antimicrobial peptides. Using atomic force microscopy (AFM) we characterized supported bilayers composed of LPSs from two bacterial chemotypes with different sensitivities to such antibiotics and peptides. Rd LPS, from more sensitive "deep rough" mutants, contains only an inner saccharide core, whereas Ra LPS, from "rough" mutants, contains a longer polysaccharide region. A vesicle fusion technique was used to deposit LPS onto either freshly cleaved mica or polyethylenimine-coated mica substrates. The thickness of the supported bilayers measured with contact-mode AFM was 7 nm for Rd LPS and 9 nm for Ra LPS, consistent with previous x-ray diffraction measurements. In water the Ra LPS bilayer surface was more disordered than Rd LPS bilayers, likely due to the greater volume occupied by the longer Ra LPS polysaccharide region. Since deep rough mutants contain bacterial phospholipid (BPL) as well as LPS on their surfaces, we also investigated the organization of Rd LPS/BPL bilayers. Differential scanning calorimetry and x-ray diffraction indicated that incorporation of BPL reduced the phase transition temperature, enthalpy, and average bilayer thickness of Rd LPS. For Rd LPS/BPL mixtures, AFM showed irregularly shaped regions thinner than Rd LPS bilayers by 2 nm (the difference in thickness between Rd LPS and BPL bilayers), whose area increased with increasing BPL concentration. We argue that the increased permeability of deep rough mutants is due to structural modifications caused by BPL to the LPS membrane, in LPS hydrocarbon chain packing and in the formation of BPL-enriched microdomains.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Bactérias Gram-Negativas/química , Lipopolissacarídeos/química , Microdomínios da Membrana/fisiologia , Fosfolipídeos/química , Silicatos de Alumínio/química , Varredura Diferencial de Calorimetria , Microscopia de Força Atômica , Polietileno/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA