Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Senses ; 39(6): 515-28, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24846212

RESUMO

Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein-coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste-related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH(4)Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000 mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH(4)Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt.


Assuntos
Canais de Cálcio/genética , Sais/metabolismo , Paladar , Amilorida/metabolismo , Animais , Canais de Cálcio/metabolismo , Nervo da Corda do Tímpano/fisiologia , Feminino , Preferências Alimentares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cloreto de Potássio/metabolismo , Cloreto de Sódio/metabolismo , Lactato de Sódio/metabolismo , Papilas Gustativas/fisiologia , Percepção Gustatória
2.
Br J Pharmacol ; 181(17): 3282-3299, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38745397

RESUMO

BACKGROUND AND PURPOSE: Many medications taste intensely bitter. The innate aversion to bitterness affects medical compliance, especially in children. There is a clear need to develop bitter blockers to suppress the bitterness of vital medications. Bitter taste is mediated by TAS2R receptors. Because different pharmaceutical compounds activate distinct sets of TAS2Rs, targeting specific receptors may only suppress bitterness for certain, but not all, bitter-tasting compounds. Alternative strategies are needed to identify universal bitter blockers that will improve the acceptance of every medication. Taste cells in the mouth transmit signals to afferent gustatory nerve fibres through the release of ATP, which activates the gustatory nerve-expressed purine receptors P2X2/P2X3. We hypothesized that blocking gustatory nerve transmission with P2X2/P2X3 inhibitors (e.g. 5-(5-iodo-4-methoxy-2-propan-2-ylphenoxy)pyrimidine-2,4-diamine [AF-353]) would reduce bitterness for all medications and bitter compounds. EXPERIMENTAL APPROACH: Human sensory taste testing and mouse behavioural analyses were performed to determine if oral application of AF-353 blocks perception of bitter taste and other taste qualities but not non-gustatory oral sensations (e.g. tingle). KEY RESULTS: Rinsing the mouth with AF-353 in humans or oral swabbing it in mice suppressed the bitter taste and avoidance behaviours of all compounds tested. We further showed that AF-353 suppressed other taste qualities (i.e. salt, sweet, sour and savoury) but had no effects on other oral or nasal sensations (e.g, astringency and oral tingle). CONCLUSION AND IMPLICATIONS: This is the first time a universal, reversible taste blocker in humans has been reported. Topical application of P2X2/P2X3 inhibitor to suppress bitterness may improve medical compliance.


Assuntos
Antagonistas do Receptor Purinérgico P2X , Receptores Purinérgicos P2X3 , Paladar , Humanos , Paladar/efeitos dos fármacos , Animais , Receptores Purinérgicos P2X3/metabolismo , Masculino , Feminino , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Adulto , Camundongos , Receptores Purinérgicos P2X2/metabolismo , Administração Tópica , Adulto Jovem , Pirimidinas/farmacologia , Pirimidinas/administração & dosagem , Camundongos Endogâmicos C57BL
3.
Physiol Behav ; 105(5): 1214-8, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22230254

RESUMO

Calcium intake depends on orosensory factors, implying the presence of a mechanism for calcium detection in the mouth. To better understand how information about oral calcium is conveyed to the brain, we examined the effects of chorda tympani nerve transection on calcium chloride (CaCl(2)) taste preferences and thresholds in male Wistar rats. The rats were given bilateral transections of the chorda tympani nerve (CTX) or control surgery. After recovery, they received 48-h two-bottle tests with an ascending concentration series of CaCl(2). Whereas control rats avoided CaCl(2) at concentrations of 0.1mM and higher, rats with CTX were indifferent to CaCl(2) concentrations up to 10mM. Rats with CTX had significantly higher preference scores for 0.316 and 3.16 mM CaCl(2) than did control rats. The results imply that the chorda tympani nerve is required for the normal avoidance of CaCl(2) solution.


Assuntos
Aprendizagem da Esquiva/fisiologia , Cloreto de Cálcio , Nervo da Corda do Tímpano/fisiologia , Traumatismos dos Nervos Cranianos/fisiopatologia , Limiar Gustativo/fisiologia , Administração Oral , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/fisiologia , Animais , Aprendizagem por Associação/efeitos dos fármacos , Aprendizagem por Associação/fisiologia , Aprendizagem da Esquiva/efeitos dos fármacos , Cloreto de Cálcio/administração & dosagem , Nervo da Corda do Tímpano/lesões , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Wistar , Paladar/efeitos dos fármacos , Paladar/fisiologia , Limiar Gustativo/efeitos dos fármacos
4.
Chem Senses ; 30(3): 231-40, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15741599

RESUMO

Nearly all mammalian species like sweet-tasting foods and drinks, but there are differences in the degree of 'sweet tooth' both between species and among individuals of the same species. Some individual differences can be explained by genetic variability. Polymorphisms in a sweet taste receptor (Tas1r3) account for a large fraction of the differences in consumption of sweet solutions among inbred mouse strains. We wondered whether mice and rats share the same Tas1r3 alleles, and whether this gene might explain the large difference in saccharin preference among rats. We conducted three experiments to test this. We examined DNA sequence differences in the Tas1r3 gene among rats that differed in their consumption of saccharin in two-bottle choice tests. The animals tested were from an outbred strain (Sprague-Dawley; experiment 1), selectively bred to be high- or low-saccharin consumers (HiS and LoS; experiment 2), or from inbred strains with established differences in saccharin preference (FH/Wjd and ACI; experiment 3). Although there was considerable variation in saccharin preference among the rats there was no variation in the protein-coding regions of the Tas1r3 gene. DNA variants in intronic regions were detected in 1 (of 12) outbred rat with lower-than-average saccharin preference and in the ACI inbred strain, which also has a lower saccharin preference than the FH/Wjd inbred partner strain. Possible effects of these intronic nucleotide variants on Tas1r3 gene expression or the presence of T1R3 protein in taste papillae were evaluated in the ACI and FH/Wjd strains. Based upon the results of these studies, we conclude that polymorphisms in the protein-coding regions of the sweet receptor gene Tas1r3 are uncommon and do not account for individual differences in saccharin preference for these strains of rats. DNA variants in intron 4 and 5 are more common but appear to be innocuous.


Assuntos
Comportamento de Escolha/fisiologia , Preferências Alimentares/fisiologia , Polimorfismo Genético , Receptores de Superfície Celular/fisiologia , Sacarina/metabolismo , Animais , Variação Genética , Ratos , Ratos Endogâmicos , Ratos Sprague-Dawley , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G , Alinhamento de Sequência , Especificidade da Espécie , Edulcorantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA