Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 12(4): 298-303, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26928935

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that oxidatively break down recalcitrant polysaccharides such as cellulose and chitin. Since their discovery, LPMOs have become integral factors in the industrial utilization of biomass, especially in the sustainable generation of cellulosic bioethanol. We report here a structural determination of an LPMO-oligosaccharide complex, yielding detailed insights into the mechanism of action of these enzymes. Using a combination of structure and electron paramagnetic resonance spectroscopy, we reveal the means by which LPMOs interact with saccharide substrates. We further uncover electronic and structural features of the enzyme active site, showing how LPMOs orchestrate the reaction of oxygen with polysaccharide chains.


Assuntos
Celulose/metabolismo , Quitina/metabolismo , Oxigenases de Função Mista/metabolismo , Sequência de Aminoácidos , Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Sítios de Ligação , Domínio Catalítico , Cobre/metabolismo , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Lentinula/enzimologia , Lentinula/genética , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Modelos Moleculares , Dados de Sequência Molecular , Oligossacarídeos/química , Oxirredução , Especificidade por Substrato
2.
Proc Natl Acad Sci U S A ; 108(37): 15079-84, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21876164

RESUMO

The enzymatic degradation of recalcitrant plant biomass is one of the key industrial challenges of the 21st century. Accordingly, there is a continuing drive to discover new routes to promote polysaccharide degradation. Perhaps the most promising approach involves the application of "cellulase-enhancing factors," such as those from the glycoside hydrolase (CAZy) GH61 family. Here we show that GH61 enzymes are a unique family of copper-dependent oxidases. We demonstrate that copper is needed for GH61 maximal activity and that the formation of cellodextrin and oxidized cellodextrin products by GH61 is enhanced in the presence of small molecule redox-active cofactors such as ascorbate and gallate. By using electron paramagnetic resonance spectroscopy and single-crystal X-ray diffraction, the active site of GH61 is revealed to contain a type II copper and, uniquely, a methylated histidine in the copper's coordination sphere, thus providing an innovative paradigm in bioinorganic enzymatic catalysis.


Assuntos
Biomassa , Celulose/metabolismo , Cobre/metabolismo , Glicosídeo Hidrolases/metabolismo , Metaloproteínas/metabolismo , Thermoascus/enzimologia , Biocatálise , Domínio Catalítico , Celulose/química , Espectroscopia de Ressonância de Spin Eletrônica , Histidina/metabolismo , Íons , Metilação , Modelos Moleculares , Oxirredução , Ácidos Fosfóricos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Dalton Trans ; 49(11): 3413-3422, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32125319

RESUMO

Probing the detailed interaction between lytic polysaccharide monooxygenases (LPMOs) and their polysaccharide substrates is key to revealing further insights into the mechanism of action of this class of enzymes on recalcitrant biomass. This investigation is somewhat hindered, however, by the insoluble nature of the substrates, which precludes the use of most optical spectroscopic techniques. Herein, we report a new semi-oriented EPR method which evaluates directly the binding of cellulose-active LPMOs to crystalline cellulose. We make use of the intrinsic order of cellulose fibres in Apium graveolens (celery) to orient the LPMO with respect to the magnetic field of an EPR spectrometer. The subsequent angle-dependent changes observed in the EPR spectra can then be related to the orientation of the g matrix principal directions with respect to the magnetic field of the spectrometer and, hence, to the binding of the enzyme onto the cellulose fibres. This method, which does not require specific modification of standard CW-EPR equipment, can be used as a general procedure to investigate LPMO-cellulose interactions.


Assuntos
Celulose/química , Oxigenases de Função Mista/química , Polissacarídeos/química , Apium/química , Celulose/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Campos Magnéticos , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo
4.
Biotechnol Adv ; 35(6): 815-831, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28624475

RESUMO

Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H2O2 that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H2O2 generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly "fueling" electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D3, drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations.


Assuntos
Biotransformação , Lacase/química , Oxirredutases/química , Dinitrocresóis/química , Fungos/química , Fungos/enzimologia , Heme/química , Heme/genética , Lacase/genética , Lignina/química , Lignina/genética , Oxirredução , Oxirredutases/classificação , Oxirredutases/genética , Peroxidases/química , Peroxidases/genética
5.
Nat Commun ; 6: 5961, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25608804

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are recently discovered enzymes that oxidatively deconstruct polysaccharides. LPMOs are fundamental in the effective utilization of these substrates by bacteria and fungi; moreover, the enzymes have significant industrial importance. We report here the activity, spectroscopy and three-dimensional structure of a starch-active LPMO, a representative of the new CAZy AA13 family. We demonstrate that these enzymes generate aldonic acid-terminated malto-oligosaccharides from retrograded starch and boost significantly the conversion of this recalcitrant substrate to maltose by ß-amylase. The detailed structure of the enzyme's active site yields insights into the mechanism of action of this important class of enzymes.


Assuntos
Ácidos/química , Maltose/química , Oxigenases de Função Mista/química , Oligossacarídeos/química , Polissacarídeos/química , Domínio Catalítico , Celulose/química , Cobre/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Evolução Molecular , Fungos/enzimologia , Genômica , Histidina/química , Oxigênio/química , Filogenia , Conformação Proteica , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Amido , Especificidade por Substrato , beta-Amilase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA