Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 18(4): 2294-2303, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442895

RESUMO

This paper presents the results of zeta potential, water contact angle, atomic force microscopy image, in vitro solubility, and content of heavy metals in polylactic acid (PLA)/chitosan (CS) nanoparticles loading nifedipine. In addition, the In Vivo test of the PLA/CS nanoparticles loading nifedipine in the mice is also one of highlights of this work. The Zeta potential result shows that the charged surface of the PLA/CS nanoparticles loading nifedipine is neutral, negative or complex depending on nifedipine content. Nifedipine plays a role in increase of hydrophobic property, swelling degree and regular surface as well as decrease of surface rough of the nanoparticles. The PLA/CS/nifedipine nanoparticles are dissolved in the solutions with pH 6.8, pH 4.5 and pH 1.2. The In Vivo test of PLA/CS nanoparticles loading nifedipine on mice was evaluated by the change in diastolic pressure, systolic pressure, arterial pressure and heart rate. The obtained results confirm that the PLA/CS nanoparticles loading nifedipine is suitable to apply in the treatment of hypertension patients lately.


Assuntos
Bloqueadores dos Canais de Cálcio/administração & dosagem , Quitosana/química , Nanopartículas , Nifedipino/administração & dosagem , Poliésteres/química , Animais , Bloqueadores dos Canais de Cálcio/farmacocinética , Humanos , Camundongos , Nifedipino/farmacocinética , Polímeros
2.
J Nanosci Nanotechnol ; 15(12): 9585-90, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26682382

RESUMO

Poly-lactic acid (PLA) has been widely applied in the medical field (in biomedicines such as medical capsules, surgical sutures and suture wounds) owing to its high biodegradability, good biocompatibility and ability to be dissolved in common solvents. Chitosan (CS) is an abundant polysaccharide and a cationic polyelectrolyte present in nature. In this study, the combination of PLA and CS has been used to form PLA/CS nanocomposites having the advantages of both the original components. To enhance the dispersibility and compatibility between PLA and CS in the PLA/CS nanocomposites, polycaprolactone (PCL) is added as a compatibilizer. The Fourier Transform Infrared spectroscopies prove the existence of the interactions of PCL with PLA and CS. A more regular dispersion of CS of 200-400 nm particle size, is observed in the PLA matrix of the PLA/CS nanocomposites containing PCL, through the Field Emission Scanning Electron Microscopy images. The appearance of one glass transition temperature (T(g)) value of PLA/CS/PCL nanocomposites occuring between the T(g) values of PLA and CS in DSC diagrams confirms the improvement in the compatibility between PLA and CS, due to the presence of PCL. The TGA result shows that PCL plays an important role in enhancing the thermal stability of PLA/CS/PCL nanocomposites. The hydrolysis of PLA/CS/PCL nanocomposites in alkaline and phosphate buffer solutions was investigated. The obtained results show that the PLA/CS/PCL nanocomposites have slower hydrolysis ability than the PLA/CS composites.


Assuntos
Quitosana/química , Nanocompostos/química , Poliésteres/química , Hidrólise , Microscopia Eletrônica de Varredura
3.
J Nanosci Nanotechnol ; 15(12): 9991-10001, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26682444

RESUMO

The deposition of TiN on stainless steel substrates may improve the stability and compatibility of this material with bone, which may be advantageously exploited for the elaboration of advanced pros- thetic devices. In this work, TiN-coated 316LSS (by way of DC magnetron sputtering) was used as a starting material for investigating the electrochemical post-deposition of hydroxyapatite (HAp) which has a composition close to that of bone. Electrodeposition was carried out starting from an aqueous medium containing solubilized Ca(NO3)2 and NH4H2PO4 in the presence of H2O2. We report the influence of experimental conditions on the morphology of the obtained HAp coating on TiN/316LSS. The effect of applied potential, temperature, H2O2 concentration, pH and duration of reaction were thoroughly discussed on the basis of X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy and Energy Dispersive X-ray Spectroscopy (EDX) results. This method appears advantageous for producing HAp-coated implant materials.


Assuntos
Materiais Biocompatíveis/química , Durapatita/química , Titânio/química , Galvanoplastia , Peróxido de Hidrogênio , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA