Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Plants ; 9(7): 1154-1168, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37349550

RESUMO

Wood cellulose microfibril (CMF) is the most abundant organic substance on Earth but its nanostructure remains poorly understood. There are controversies regarding the glucan chain number (N) of CMFs during initial synthesis and whether they become fused afterward. Here, we combined small-angle X-ray scattering, solid-state nuclear magnetic resonance and X-ray diffraction analyses to resolve CMF nanostructures in native wood. We developed small-angle X-ray scattering measurement methods for the cross-section aspect ratio and area of the crystalline-ordered CMF core, which has a higher scattering length density than the semidisordered shell zone. The 1:1 aspect ratio suggested that CMFs remain mostly segregated, not fused. The area measurement reflected the chain number in the core zone (Ncore). To measure the ratio of ordered cellulose over total cellulose (Roc) by solid-state nuclear magnetic resonance, we developed a method termed global iterative fitting of T1ρ-edited decay (GIFTED), in addition to the conventional proton spin relaxation editing method. Using the formula N = Ncore/Roc, most wood CMFs were found to contain 24 glucan chains, conserved between gymnosperm and angiosperm trees. The average CMF has a crystalline-ordered core of ~2.2 nm diameter and a semidisordered shell of ~0.5 nm thickness. In naturally and artificially aged wood, we observed only CMF aggregation (contact without crystalline continuity) but not fusion (forming a conjoined crystalline unit). This further argued against the existence of partially fused CMFs in new wood, overturning the recently proposed 18-chain fusion hypothesis. Our findings are important for advancing wood structural knowledge and more efficient use of wood resources in sustainable bio-economies.


Assuntos
Microfibrilas , Madeira , Celulose/química , Espectroscopia de Ressonância Magnética , Sementes
2.
Nanoscale ; 5(16): 7629-38, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23846751

RESUMO

We simultaneously employed grazing incidence small-angle and wide-angle X-ray scattering (GISAXS and GIWAXS) techniques to quantitatively study the structural evolution and kinetic behavior of poly(3-hexylthiophene) (P3HT) crystallization, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) aggregation and amorphous P3HT/PCBM domains from a bulk heterojunction (BHJ) to a thermally unstable structure. The independent phase separation regimes on the nanoscale (∼10 nm), mesoscale (∼100 nm) and macroscale (∼µm) are revealed for the first time. Bis-PCBM molecules as inhibitors incorporated into the P3HT/PCBM blend films were adopted as a case study of a control strategy for improving the thermal stability of P3HT/PCBM solar cell. The detailed information on the formation, growth, transformation and mutual interaction between different phases during the hierarchical structural evolution of P3HT/PCBM:xbis-PCBM (x = 8-100%) blend films are presented herein. This systematic study proposes the mechanisms of thermal instability for a polymer/fullerene-based solar cell. We demonstrate a new fundamental concept that the structural evolution and thermal stability of mesoscale amorphous P3HT/PCBM domains during heating are the origin of controlling thermal instability rather than those of nanoscale thermally-stable BHJ structures. It leads to a low-cost and easy-fabrication control strategy for effectively tailoring the hierarchical morphology against thermal instability from molecular to macro scales. The optimum treatment achieving high thermal stability, control of mesoscale domains, can be effectively designed. It is independent of the original BHJ nanostructure design of a polymer/fullerene-based solar cell with high performance. It advances the general knowledge on the thermal instability directly arising from the nanoscale structure.


Assuntos
Polímeros/química , Energia Solar , Cristalização , Fulerenos/química , Nanoestruturas/química , Espalhamento a Baixo Ângulo , Tiofenos/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA