Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Nucl Cardiol ; 28(5): 1875-1886, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-31721093

RESUMO

BACKGROUND: A confounding issue in [18F]-NaF PET/CT imaging of abdominal aortic aneurysms (AAA) is the spill in contamination from the bone into the aneurysm. This study investigates and corrects for this spill in contamination using the background correction (BC) technique without the need to manually exclude the part of the AAA region close to the bone. METHODS: Seventy-two (72) datasets of patients with AAA were reconstructed with the standard ordered subset expectation maximization (OSEM) algorithm incorporating point spread function (PSF) modelling. The spill in effect in the aneurysm was investigated using two target regions of interest (ROIs): one covering the entire aneurysm (AAA), and the other covering the aneurysm but excluding the part close to the bone (AAAexc). ROI analysis was performed by comparing the maximum SUV in the target ROI (SUVmax(T)), the corrected cSUVmax (SUVmax(T) - SUVmean(B)) and the target-to-blood ratio (TBR = SUVmax(T)/SUVmean(B)) with respect to the mean SUV in the right atrium region. RESULTS: There is a statistically significant higher [18F]-NaF uptake in the aneurysm than normal aorta and this is not correlated with the aneurysm size. There is also a significant difference in aneurysm uptake for OSEM and OSEM + PSF (but not OSEM + PSF + BC) when quantifying with AAA and AAAexc due to the spill in from the bone. This spill in effect depends on proximity of the aneurysms to the bone as close aneurysms suffer more from spill in than farther ones. CONCLUSION: The background correction (OSEM + PSF + BC) technique provided more robust AAA quantitative assessments regardless of the AAA ROI delineation method, and thus it can be considered as an effective spill in correction method for [18F]-NaF AAA studies.


Assuntos
Algoritmos , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Fluordesoxiglucose F18/farmacocinética , Processamento de Imagem Assistida por Computador , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos/farmacocinética , Idoso , Aneurisma da Aorta Abdominal/metabolismo , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Fluoreto de Sódio/farmacocinética
2.
Philos Trans A Math Phys Eng Sci ; 379(2200): 20200201, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33966459

RESUMO

Abdominal aortic aneurysm (AAA) monitoring and risk of rupture is currently assumed to be correlated with the aneurysm diameter. Aneurysm growth, however, has been demonstrated to be unpredictable. Using PET to measure uptake of [18F]-NaF in calcified lesions of the abdominal aorta has been shown to be useful for identifying AAA and to predict its growth. The PET low spatial resolution, however, can affect the accuracy of the diagnosis. Advanced edge-preserving reconstruction algorithms can overcome this issue. The kernel method has been demonstrated to provide noise suppression while retaining emission and edge information. Nevertheless, these findings were obtained using simulations, phantoms and a limited amount of patient data. In this study, the authors aim to investigate the usefulness of the anatomically guided kernelized expectation maximization (KEM) and the hybrid KEM (HKEM) methods and to judge the statistical significance of the related improvements. Sixty-one datasets of patients with AAA and 11 from control patients were reconstructed with ordered subsets expectation maximization (OSEM), HKEM and KEM and the analysis was carried out using the target-to-blood-pool ratio, and a series of statistical tests. The results show that all algorithms have similar diagnostic power, but HKEM and KEM can significantly recover uptake of lesions and improve the accuracy of the diagnosis by up to 22% compared to OSEM. The same improvements are likely to be obtained in clinical applications based on the quantification of small lesions, like for example cancer. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 1'.


Assuntos
Algoritmos , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/estatística & dados numéricos , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Simulação por Computador , Bases de Dados Factuais/estatística & dados numéricos , Radioisótopos de Flúor , Humanos , Interpretação de Imagem Assistida por Computador/estatística & dados numéricos , Imagens de Fantasmas , Compostos Radiofarmacêuticos , Fluoreto de Sódio
3.
J Nucl Cardiol ; 27(4): 1126-1141, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31667675

RESUMO

BACKGROUND: The standard MR Dixon-based attenuation correction (AC) method in positron emission tomography/magnetic resonance (PET/MR) imaging segments only the air, lung, fat and soft-tissues (4-class), thus neglecting the highly attenuating bone tissues and affecting quantification in bones and adjacent vessels. We sought to address this limitation by utilizing the distinctively high bone uptake rate constant Ki expected from 18F-Sodium Fluoride (18F-NaF) to segment bones from PET data and support 5-class hybrid PET/MR-driven AC for 18F-NaF and 18F-Fluorodeoxyglucose (18F-FDG) PET/MR cardiovascular imaging. METHODS: We introduce 5-class Ki/MR-AC for (i) 18F-NaF studies where the bones are segmented from Patlak Ki images and added as the 5th tissue class to the MR Dixon 4-class AC map. Furthermore, we propose two alternative dual-tracer protocols to permit 5-class Ki/MR-AC for (ii) 18F-FDG-only data, with a streamlined simultaneous administration of 18F-FDG and 18F-NaF at 4:1 ratio (R4:1), or (iii) for 18F-FDG-only or both 18F-FDG and 18F-NaF dual-tracer data, by administering 18F-NaF 90 minutes after an equal 18F-FDG dosage (R1:1). The Ki-driven bone segmentation was validated against computed tomography (CT)-based segmentation in rabbits, followed by PET/MR validation on 108 vertebral bone and carotid wall regions in 16 human volunteers with and without prior indication of carotid atherosclerosis disease (CAD). RESULTS: In rabbits, we observed similar (< 1.2% mean difference) vertebral bone 18F-NaF SUVmean scores when applying 5-class AC with Ki-segmented bone (5-class Ki/CT-AC) vs CT-segmented bone (5-class CT-AC) tissue. Considering the PET data corrected with continuous CT-AC maps as gold-standard, the percentage SUVmean bias was reduced by 17.6% (18F-NaF) and 15.4% (R4:1) with 5-class Ki/CT-AC vs 4-class CT-AC. In humans without prior CAD indication, we reported 17.7% and 20% higher 18F-NaF target-to-background ratio (TBR) at carotid bifurcations wall and vertebral bones, respectively, with 5- vs 4-class AC. In the R4:1 human cohort, the mean 18F-FDG:18F-NaF TBR increased by 12.2% at carotid bifurcations wall and 19.9% at vertebral bones. For the R1:1 cohort of subjects without CAD indication, mean TBR increased by 15.3% (18F-FDG) and 15.5% (18F-NaF) at carotid bifurcations and 21.6% (18F-FDG) and 22.5% (18F-NaF) at vertebral bones. Similar TBR enhancements were observed when applying the proposed AC method to human subjects with prior CAD indication. CONCLUSIONS: Ki-driven bone segmentation and 5-class hybrid PET/MR-driven AC is feasible and can significantly enhance 18F-NaF and 18F-FDG contrast and quantification in bone tissues and carotid walls.


Assuntos
Doenças das Artérias Carótidas/diagnóstico por imagem , Fluordesoxiglucose F18 , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos , Adulto , Animais , Osso e Ossos/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Coelhos , Fluoreto de Sódio
4.
Contrast Media Mol Imaging ; 2019: 3438093, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800014

RESUMO

Positron emission tomography (PET) provides simple noninvasive imaging biomarkers for multiple human diseases which can be used to produce quantitative information from single static images or to monitor dynamic processes. Such kinetic studies often require the tracer input function (IF) to be measured but, in contrast to direct blood sampling, the image-derived input function (IDIF) provides a noninvasive alternative technique to estimate the IF. Accurate estimation can, in general, be challenging due to the partial volume effect (PVE), which is particularly important in preclinical work on small animals. The recently proposed hybrid kernelised ordered subsets expectation maximisation (HKEM) method has been shown to improve accuracy and contrast across a range of different datasets and count levels and can be used on PET/MR or PET/CT data. In this work, we apply the method with the purpose of providing accurate estimates of the aorta IDIF for rabbit PET studies. In addition, we proposed a method for the extraction of the aorta region of interest (ROI) using the MR and the HKEM image, to minimise the PVE within the rabbit aortic region-a method which can be directly transferred to the clinical setting. A realistic simulation study was performed with ten independent noise realisations while two, real data, rabbit datasets, acquired with the Biograph Siemens mMR PET/MR scanner, were also considered. For reference and comparison, the data were reconstructed using OSEM, OSEM with Gaussian postfilter and KEM, as well as HKEM. The results across the simulated datasets and different time frames show reduced PVE and accurate IDIF values for the proposed method, with 5% average bias (0.8% minimum and 16% maximum bias). Consistent results were obtained with the real datasets. The results of this study demonstrate that HKEM can be used to accurately estimate the IDIF in preclinical PET/MR studies, such as rabbit mMR data, as well as in clinical human studies. The proposed algorithm is made available as part of an open software library, and it can be used equally successfully on human or animal data acquired from a variety of PET/MR or PET/CT scanners.


Assuntos
Aorta/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Algoritmos , Animais , Cinética , Coelhos , Fluoreto de Sódio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA