Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Prosthodont Res ; 66(4): 572-581, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35197408

RESUMO

PURPOSE: This study explores novel solutions other than standard SBF for biomimetic evaluations of mineralization particularly for resin composites containing bioactive glass (BAG). METHODS: Experimental UDMA/TEGDMA resin composites with 0.0, 1.9, 3.8 or 7.7 vol% of 45S5 BAG fillers were prepared. Besides simulated body fluid (SBF) as control, the specimens were immersed in three other solutions either with bicarbonate which are Hank's balanced salt solution (HBSS) and cell culture medium (MEM), or without bicarbonate which is a novel Simple HEPES-containing Artificial Remineralization Promotion (SHARP) solution, for 3, 7 and 14 days. These solutions were then analyzed by ICP-OES and pH meter, and the surfaces of the BAG composites were analyzed by SEM, XRD and FTIR. RESULTS: ICP-OES revealed Ca and P concentration continuously decrease, while Si concentration increases with time in the solutions other than SBF, which showed almost unchanged elemental concentration. Only SHARP solution is able to maintain a constant pH over the immersion time. SEM, together with XRD and FTIR, showed nano-sized octacalcium phosphate (OCP) nanospheres formation on 3.8 and 7.7 vol% BAG composites after 14 days immersion in HBSS (500-600 nm) and MEM (300-400 nm). SHARP solution enabled OCP formation after 3 days and then self-assembled into urchin-like carbonated hydroxyapatite (CHA) microspheres encompassed with nanorods of 100 nm width and 8 µm length after 14 days of immersion for 7.7 vol% BAG composites. CONCLUSION: This study suggests SHARP solution can evaluate mineralization biomimetically whereas CHA microspheres can be formed on BAG-containing resin composites.


Assuntos
Bicarbonatos , Biomimética , Fosfatos de Cálcio , Resinas Compostas , Vidro , HEPES , Hidroxiapatitas , Teste de Materiais
2.
Nanoscale ; 12(36): 18864-18874, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32897280

RESUMO

Current control of pathogenic bacteria at all biomaterial interfaces is poorly attuned to a broad range of disease-causing pathogens. Leading antimicrobial surface functionalization strategies with antimicrobial peptides (AMPs), defensins, have not shown their promised efficacy. One of the main problems is the lack of stability and swift clearance from the surface. Surface nanotopography bearing sharp protrusions is a non-chemical solution that is intrinsically stable and long-lasting. Previously, the geometrically ordered arrays of nanotipped spines repelled or rapidly ruptured bacteria that come into contact. The killing properties so far work on cocci and rod-like bacteria, but there is no validation of the efficacy of protrusional surfaces on pathogenic bacteria with different sizes and morphologies, thus broadening the utility of such surfaces to cover increasingly more disease entities. Here, we report a synthetic analogue of nanotipped spines with a pyramidal shape that show great effectiveness on species of bacteria with strongly contrasting shapes and sizes. To highlight this phenomenon in the field of dental applications where selective bacterial control is vital to the clinical success of biomaterial functions, we modified the poly(methyl)-methacrylate (PMMA) texture and tested it against Streptococcus mutans, Enterococcus faecalis, Porphyromonas gingivalis, and Fusobacterium nucleatum. These nanopyramids performed effectively at levels well above those of normal and roughened PMMA biomaterials for dentistry and a model material for general use in medicine and disease transmission in hospital environments.


Assuntos
Anti-Infecciosos , Biofilmes , Antibacterianos , Porphyromonas gingivalis , Streptococcus mutans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA