Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Environ Sci Technol ; 57(23): 8476-8483, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37256715

RESUMO

Understanding the biological impacts of plastic pollution requires an effective methodology to detect unlabeled microplastics in environmental samples. Detecting unlabeled microplastics in an organism generally requires a digestion protocol, which results in the loss of spatial information on the distribution of microplastic within the organism and could lead to the disappearance of the smaller plastics. Fluorescence microscopy allows visualization of ingested microplastics but many labeling strategies are nonspecific and label biomass, thus limiting our ability to distinguish internalized plastics. While prelabeled plastics can be used to avoid nonspecific labeling, this approach precludes the detection of environmental microplastics in organisms. Also, using prelabeled microplastics can affect the viability of the organism and impact plastic uptake. Thus, a method was developed that employs nonspecific labeling with a tissue-clearing technique. Briefly, unlabeled microplastics are stained with a fluorescent dye after ingestion by the organism. The tissue-clearing technique then removes tissue-bound dye while rendering the structurally intact organism transparent. The internalized plastics remain stained and can be visualized in the cleared tissue with fluorescence microscopy. The technique is demonstrated using polystyrene beads in living aquatic organismsTigriopus californicusandDaphnia magnaand by spiking a model vertebrate (Cephalochordata) with different microplastics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Imageamento Tridimensional , Poluentes Químicos da Água/análise , Poliestirenos , Monitoramento Ambiental
2.
Environ Sci Technol ; 56(10): 6426-6435, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35472273

RESUMO

Understanding of nanoplastic prevalence and toxicology is limited by imaging challenges resulting from their small size. Fluorescence microscopy is widely applied to track and identify microplastics in laboratory studies and environmental samples. However, conventional fluorescence microscopy, due to diffraction, lacks the resolution to precisely localize nanoplastics in tissues, distinguish them from free dye, or quantify them in environmental samples. To address these limitations, we developed techniques to label nanoplastics for imaging with stimulated emission depletion (STED) microscopy to achieve resolution at an order of magnitude superior to conventional fluorescence microscopy. These techniques include (1) passive sorption; (2) swell incorporation; and (3) covalent coupling of STED-compatible fluorescence dyes to nanoplastics. We demonstrate that our labeling techniques, combined with STED microscopy, can be used to resolve nanoplastics of different shapes and compositions as small as 50 nm. The longevity of dye labeling is demonstrated in different media and conditions of biological and environmental relevance. We also test STED imaging of nanoplastics in exposure experiments with the model worm Caenorhabditis elegans. Our work shows the value of the method for detection and localization of nanoplastics as small as 50 nm in a whole animal without disruption of the tissue. These techniques will allow more precise localization and quantification of nanoplastics in complex matrices such as biological tissues in exposure studies.


Assuntos
Microplásticos , Plásticos , Animais , Caenorhabditis elegans , Microscopia de Fluorescência
3.
Proc Natl Acad Sci U S A ; 116(50): 25156-25161, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767765

RESUMO

Artificial athletic turf containing crumb rubber (CR) from shredded tires is a growing environmental and public health concern. However, the associated health risk is unknown due to the lack of toxicity data for higher vertebrates. We evaluated the toxic effects of CR in a developing amniote vertebrate embryo. CR water leachate was administered to fertilized chicken eggs via different exposure routes, i.e., coating by dropping CR leachate on the eggshell; dipping the eggs into CR leachate; microinjecting CR leachate into the air cell or yolk. After 3 or 7 d of incubation, embryonic morphology, organ development, physiology, and molecular pathways were measured. The results showed that CR leachate injected into the yolk caused mild to severe developmental malformations, reduced growth, and specifically impaired the development of the brain and cardiovascular system, which were associated with gene dysregulation in aryl hydrocarbon receptor, stress-response, and thyroid hormone pathways. The observed systematic effects were probably due to a complex mixture of toxic chemicals leaching from CR, such as metals (e.g., Zn, Cr, Pb) and amines (e.g., benzothiazole). This study points to a need to closely examine the potential regulation of the use of CR on playgrounds and artificial fields.


Assuntos
Materiais de Construção/toxicidade , Exposição Ambiental/análise , Borracha/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/embriologia , Embrião de Galinha , Desenvolvimento Embrionário , Saúde Ambiental , Reciclagem , Testes de Toxicidade
4.
Acc Chem Res ; 52(4): 858-866, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30925038

RESUMO

The vast amount of plastic waste emitted into the environment and the increasing concern of potential harm to wildlife has made microplastic and nanoplastic pollution a growing environmental concern. Plastic pollution has the potential to cause both physical and chemical harm to wildlife directly or via sorption, concentration, and transfer of other environmental contaminants to the wildlife that ingest plastic. Small particles of plastic pollution, termed microplastics (>100 nm and <5 mm) or nanoplastics (<100 nm), can form through fragmentation of larger pieces of plastic. These small particles are especially concerning because of their high specific surface area for sorption of contaminants as well as their potential to translocate in the bodies of organisms. These same small particles are challenging to separate and identify in environmental samples because their size makes handling and observation difficult. As a result, our understanding of the environmental prevalence of nanoplastics and microplastics is limited. Generally, the smaller the size of the plastic particle, the more difficult it is to separate from environmental samples. Currently employed passive density and size separation techniques to isolate plastics from environmental samples are not well suited to separate microplastics and nanoplastics. Passive flotation is hindered by the low buoyancy of small particles as well as the difficulty of handling small particles on the surface of flotation media. Here we suggest exploring alternative techniques borrowed from other fields of research to improve separation of the smallest plastic particles. These techniques include adapting active density separation (centrifugation) from cell biology and taking advantage of surface-interaction-based separations from analytical chemistry. Furthermore, plastic pollution is often challenging to quantify in complex matrices such as biological tissues and wastewater. Biological and wastewater samples are important matrices that represent key points in the fate and sources of plastic pollution, respectively. In both kinds of samples, protocols need to be optimized to increase throughput, reduce contamination potential, and avoid destruction of plastics during sample processing. To this end, we recommend adapting digestion protocols to match the expected composition of the nonplastic material as well as taking measures to reduce and account for contamination. Once separated, plastics in an environmental sample should ideally be characterized both visually and chemically. With existing techniques, microplastics and nanoplastics are difficult to characterize or even detect. Their low mass and small size provide limited signal for visual, vibrational spectroscopic, and mass spectrometric analyses. Each of these techniques involves trade-offs in throughput, spatial resolution, and sensitivity. To accurately identify and completely quantify microplastics and nanoplastics in environmental samples, multiple analytical techniques applied in tandem are likely to be required.


Assuntos
Nanoestruturas/química , Plásticos/análise , Organismos Aquáticos/química , Organismos Aquáticos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Campos Magnéticos , Espectrometria de Massas , Microplásticos/análise , Microplásticos/isolamento & purificação , Microplásticos/metabolismo , Tamanho da Partícula , Plásticos/isolamento & purificação , Plásticos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/metabolismo
5.
Environ Sci Technol ; 54(14): 8719-8727, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32543204

RESUMO

The efficacy of plastic particle removal by municipal water treatment plants is currently uncertain, and the mechanisms involved in microplastic (MP) coagulation and flocculation have only been superficially investigated. The removal of pristine versus weathered plastic debris and the impact of plastic particle size on removal remain largely unexplored. In this study, coagulation, flocculation, and settling performances were investigated using pristine and weathered MPs (polyethylene (PE) and polystyrene (PS) microspheres, and polyester (PEST) fibers). Weathering processes that changed the surface chemistry and roughness of MPs impacted MP affinity for coagulants and flocculants. A quartz crystal microbalance with dissipation monitoring was used to identify the mechanisms involved during MP coagulation and flocculation. Measured deposition rates confirmed the relatively low affinity between plastic surfaces and aluminum-based coagulants compared to cationic polyacrylamide (PAM). In every case examined, coagulant efficiency increased when the plastic surface was weathered. Removals of 97 and 99% were measured for PEST and weathered PE, respectively. Larger pristine PE MPs were the most resistant to coagulation and flocculation, with 82% removal observed even under enhanced coagulation conditions. By understanding the interaction mechanisms, the removal of weathered MPs was optimized. Finally, this study explored the use of settled water turbidity as a possible indicator of MP removal.


Assuntos
Plásticos , Purificação da Água , Floculação , Microplásticos , Eliminação de Resíduos Líquidos , Água
6.
Environ Sci Technol ; 54(11): 6859-6868, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32421333

RESUMO

Nanoplastics (NPs; <0.1 µm) are speculated to be a bigger ecological threat due to their predicted wider distribution, higher concentrations, and bioavailability. Primary NPs are manufactured to be that size, while secondary NPs originate from fragmentation of bigger debris. To date, the long-term impact of NPs in freshwater systems, particularly secondary NPs, is not well-understood. Thus, we employed a freshwater invertebrate, Daphnia magna, to investigate the chronic effects of model primary NPs, fluorescent polystyrene nanospheres (PS-NPs; 20 nm), and water leachate of weathered single-use plastics that contained micro- and nanosized particles. In experiment 1, parent Daphnia (F0) were exposed to 1 and 50 mg/L PS-NPs until the production of the neonates (F1) followed by a two-generation recovery. PS-NPs were mainly detected in the intestine and brood chamber in F0 and transferred to F1 and F2. PS-NPs significantly decreased the appendage curling and heartbeat rate in F0 and reduced reproduction in F2. In experiment 2, the plastic leachate also reduced the appendage curling rate but increased growth and reproduction. The results suggest that the acute toxicity of primary and secondary plastic particles is low even at high concentrations, but their chronic and sublethal effects should not be overlooked.


Assuntos
Daphnia , Poluentes Químicos da Água , Animais , Água Doce , Humanos , Recém-Nascido , Plásticos/toxicidade , Poliestirenos/toxicidade , Reprodução , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Langmuir ; 35(26): 8840-8849, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31177781

RESUMO

Tuning surface composition and stiffness is now an established strategy to improve the integration of medical implants. Recent evidence suggests that matrix stiffness affects bacterial adhesion, but contradictory findings have been reported in the literature. Distinguishing between the effects of bacterial adhesion and attachment strength on these surfaces may help interpret these findings. Here, we develop a precision microfluidic shear assay to quantify bacterial adhesion strength on stiffness-tunable and biomolecule-coated silicone materials. We demonstrate that bacteria are more strongly attached to soft silicones, compared to stiff silicones; as determined by retention against increasing shear flows. Interestingly, this effect is reduced when the surface is coated with matrix biomolecules. These results demonstrate that bacteria do sense and respond to stiffness of the surrounding environment and that precisely defined assays are needed to understand the interplay among surface mechanics, composition, and bacterial binding.


Assuntos
Materiais Revestidos Biocompatíveis/química , Escherichia coli K12/química , Técnicas Analíticas Microfluídicas , Silicones/química , Aderência Bacteriana , Materiais Revestidos Biocompatíveis/síntese química , Tamanho da Partícula , Resistência ao Cisalhamento , Propriedades de Superfície
8.
Environ Sci Technol ; 53(21): 12300-12310, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31552738

RESUMO

The increasing presence of micro- and nano-sized plastics in the environment and food chain is of growing concern. Although mindful consumers are promoting the reduction of single-use plastics, some manufacturers are creating new plastic packaging to replace traditional paper uses, such as plastic teabags. The objective of this study was to determine whether plastic teabags could release microplastics and/or nanoplastics during a typical steeping process. We show that steeping a single plastic teabag at brewing temperature (95 °C) releases approximately 11.6 billion microplastics and 3.1 billion nanoplastics into a single cup of the beverage. The composition of the released particles is matched to the original teabags (nylon and polyethylene terephthalate) using Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The levels of nylon and polyethylene terephthalate particles released from the teabag packaging are several orders of magnitude higher than plastic loads previously reported in other foods. An initial acute invertebrate toxicity assessment shows that exposure to only the particles released from the teabags caused dose-dependent behavioral and developmental effects.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Monitoramento Ambiental , Nylons , Plásticos , Espectroscopia de Infravermelho com Transformada de Fourier , Chá
9.
Environ Sci Technol ; 52(4): 1704-1724, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29265806

RESUMO

Plastic litter is widely acknowledged as a global environmental threat, and poor management and disposal lead to increasing levels in the environment. Of recent concern is the degradation of plastics from macro- to micro- and even to nanosized particles smaller than 100 nm in size. At the nanoscale, plastics are difficult to detect and can be transported in air, soil, and water compartments. While the impact of plastic debris on marine and fresh waters and organisms has been studied, the loads, transformations, transport, and fate of plastics in terrestrial and subsurface environments are largely overlooked. In this Critical Review, we first present estimated loads of plastics in different environmental compartments. We also provide a critical review of the current knowledge vis-à-vis nanoplastic (NP) and microplastic (MP) aggregation, deposition, and contaminant cotransport in the environment. Important factors that affect aggregation and deposition in natural subsurface environments are identified and critically analyzed. Factors affecting contaminant sorption onto plastic debris are discussed, and we show how polyethylene generally exhibits a greater sorption capacity than other plastic types. Finally, we highlight key knowledge gaps that need to be addressed to improve our ability to predict the risks associated with these ubiquitous contaminants in the environment by understanding their mobility, aggregation behavior and their potential to enhance the transport of other pollutants.


Assuntos
Plásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Água Doce , Resíduos
11.
Environ Sci Technol ; 48(5): 2715-23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24552618

RESUMO

Understanding the environmental fate and transport of engineered nanoparticles (ENPs) is of paramount importance for the formation and validation of regulatory guidelines regarding these new and increasingly prevalent materials. The present study assessed the transport of an industrial formulation of poly(vinylpyrrolidone)-stabilized silver nanoparticle (PVP-nAg) in columns packed with water-saturated quartz sand and the same sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age (i.e., growth period). Physicochemical characterization studies indicate that the PVP-nAg is stable in suspension and exhibits little change in size or electrophoretic mobility with changing ionic strength (IS) in either NaNO3 or Ca(NO3)2. The collector surface had a relatively homogeneous biofilm coating, as determined by CLSM, and a near uniform distribution of biomass and biofilm thickness following column equilibration. Transport experiments in clean sand revealed changes in the particle deposition behavior only at and above 10 mM IS Ca(NO3)2 and showed no discernible change in PVP-nAg transport behavior in the presence of 1 to 100 mM NaNO3. Transport experiments in P. aeruginosa-coated sand indicated significantly reduced retention of PVP-nAg at low IS compared to clean sand, irrespective of biofilm age. Nanoparticle retention was also generally reduced in the biofilm-coated sand at the higher IS, but to a lesser extent. The decreased retention of PVP-nAg in biofilm-coated sand compared to clean sand is likely due to repulsive electrosteric forces between the PVP coatings and extracellular polymeric substances (EPS) of the biofilm. Additionally, the slope of the rising portion of the PVP-nAg breakthrough curve was noticeably steeper in biofilm conditions than in clean sand. More mature biofilm coating also resulted in earlier breakthrough of PVP-nAg compared to younger biofilm coatings, or to the clean sand, which may be an indication of the effect of repulsive surface forces combined with selective pore size exclusion from the pores of denser, more developed biofilm. These results, when considered with other literature, indicate the importance in considering the flow dynamics, pore network and structure, the effective particle size, and particle permeability with regard to the biofilm matrix when considering the possible influence of biofilms on ENP transport.


Assuntos
Nanopartículas Metálicas/química , Povidona/química , Pseudomonas aeruginosa/química , Prata/química , Biofilmes , Poluentes Ambientais/química , Concentração Osmolar , Tamanho da Partícula , Polímeros/química , Pseudomonas aeruginosa/fisiologia , Quartzo/química , Dióxido de Silício/química , Água/química
12.
Water Res ; 254: 121301, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417265

RESUMO

Fiber-based materials have emerged as a promising option to increase the efficiency of water treatment plants while reducing their environmental impacts, notably by reducing the use of unsustainable chemicals and the size of the settling tank. Cellulose fiber-based super-bridging agents are sustainable, reusable, and versatile materials that considerably improve floc separation in conventional settling tanks or via alternative screening separation methods. In this study, the effectiveness of fiber-based materials for wastewater treatment was evaluated at lab-scale (0.25 L) and at pilot-scale (20 L) for two separation methods, namely settling and screening. For the fiber-based method, the performance of floc separation during settling was slightly affected by an 80x upscaling factor. A small decrease in turbidity removal from 93 and 86 % was observed for the jar and pilot tests, respectively. By contrast, the turbidity removal of the conventional treatment, i.e., no fibers with a settling separation, was largely affected by the upscaling with turbidity removals of 84 and 49 % for jar and pilot tests, respectively. Therefore, results are suggesting that fiber-based super-bridging agents could be implemented in full-scale water treatment plants. Moreover, the tested fibers increase the robustness of treatment by providing better floc removal than conventional treatment under several challenging conditions such as low settling time and screening with coarse screen mesh size. Furthermore, at both lab-scale and pilot-scale, the use of fiber-based materials reduced the demand for coagulant and flocculant, potentially lowering the operational costs of water treatment plants and reducing the accumulation of metal-based coagulants and synthetic polymers in sludge. Acute toxicity tests using the model organism Daphnia magna show that the cellulose fibers introduce insignificant toxicity at the optimized fiber concentration. Although dedicated mechanistic studies are required at various scales to understand in detail the influence of fibers on water treatment (coagulation/flocculation time, floc formation, floc size distribution velocity gradient, etc.), the efficacy and scalability of the fiber-based approach, along with its minimal environmental impact, position it as a viable and sustainable option for existing and future wastewater treatment plants.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Esgotos , Polímeros/química , Purificação da Água/métodos , Floculação , Celulose
13.
Environ Sci Technol ; 47(5): 2212-20, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23421856

RESUMO

A clear understanding of the factors controlling the deposition behavior of engineered nanoparticles (ENPs), such as quantum dots (QDs), is necessary for predicting their transport and fate in natural subsurface environments and in water filtration processes. A quartz crystal microbalance with dissipation monitoring (QCM-D) was used to study the effect of particle surface coatings and water chemistry on the deposition of commercial QDs onto Al2O3. Two carboxylated QDs (CdSe and CdTe) with different surface coatings were compared with two model nanoparticles: sulfate-functionalized (sPL) and carboxyl-modified (cPL) polystyrene latex. Deposition rates were assessed over a range of ionic strengths (IS) in simple electrolyte (KCl) and in electrolyte supplemented with two organic molecules found in natural waters; namely, humic acid and rhamnolipid. The Al2O3 collector used here is selected to be representative of oxide patches found on the surface of aquifer or filter grains. Deposition studies showed that ENP deposition rates on bare Al2O3 generally decreased with increasing salt concentration, with the exception of the polyacrylic-acid (PAA) coated CdTe QD which exhibited unique deposition behavior due to changes in the conformation of the PAA coating. QD deposition rates on bare Al2O3 were approximately 1 order of magnitude lower than those of the polystyrene latex nanoparticles, likely as a result of steric stabilization imparted by the QD surface coatings. Adsorption of humic acid or rhamnolipid on the Al2O3 surface resulted in charge reversal of the collector and subsequent reduction in the deposition rates of all ENPs. Moreover, the ratio of the two QCM-D output parameters, frequency and dissipation, revealed key structural information of the ENP-collector interface; namely, on bare Al2O3, the latex particles were rigidly attached as compared to the more loosely attached QDs. This study emphasizes the importance of considering the nature of ENP coatings as well as organic molecule adsorption onto particle and collector surfaces to avoid underestimating ENP mobility in natural and engineered aquatic environments.


Assuntos
Óxido de Alumínio/química , Nanopartículas/química , Poliestirenos/química , Pontos Quânticos/química , Água/química , Eletrólitos/química , Cinética , Concentração Osmolar , Propriedades de Superfície
14.
Nat Protoc ; 18(11): 3534-3564, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37816903

RESUMO

Despite the increasing concern about the harmful effects of micro- and nanoplastics (MNPs), there are no harmonized guidelines or protocols yet available for MNP ecotoxicity testing. Current ecotoxicity studies often use commercial spherical particles as models for MNPs, but in nature, MNPs occur in variable shapes, sizes and chemical compositions. Moreover, protocols developed for chemicals that dissolve or form stable dispersions are currently used for assessing the ecotoxicity of MNPs. Plastic particles, however, do not dissolve and also show dynamic behavior in the exposure medium, depending on, for example, MNP physicochemical properties and the medium's conditions such as pH and ionic strength. Here we describe an exposure protocol that considers the particle-specific properties of MNPs and their dynamic behavior in exposure systems. Procedure 1 describes the top-down production of more realistic MNPs as representative of MNPs in nature and particle characterization (e.g., using thermal extraction desorption-gas chromatography/mass spectrometry). Then, we describe exposure system development for short- and long-term toxicity tests for soil (Procedure 2) and aquatic (Procedure 3) organisms. Procedures 2 and 3 explain how to modify existing ecotoxicity guidelines for chemicals to target testing MNPs in selected exposure systems. We show some examples that were used to develop the protocol to test, for example, MNP toxicity in marine rotifers, freshwater mussels, daphnids and earthworms. The present protocol takes between 24 h and 2 months, depending on the test of interest and can be applied by students, academics, environmental risk assessors and industries.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/análise , Microplásticos/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
15.
Environ Sci Technol ; 46(8): 4449-57, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22423631

RESUMO

Quantum dots (QDs) are one example of engineered nanoparticles (ENPs) with demonstrated toxic effects. Yet, little is known about the behavior of QDs in the natural environment. This study assessed the transport of two commercial carboxylated QDs (CdTe and CdSe) and carboxylated polystyrene latex (nPL) as a model nanoparticle using saturated laboratory-scale columns. The influence of solution ionic strength (IS) and cation type (K(+) or Ca(2+)) on the transport potential of these ENPs was examined in two granular matrices - quartz sand and loamy sand. The retention of all three particles was generally low in the quartz sand columns within the range of studied IS (0.1-100 mM) for the monovalent salt (KCl). In contrast, the retention of the three ENPs in the quartz sand was significant in the presence of 10 mM Ca(2+). Moreover, ENP attachment efficiencies (α) were enhanced by at least 1 order of magnitude in columns packed with loamy sand (for IS between 0.1-10 mM KCl). Although all three ENPs used here are carboxylated, they differ in the type of surface coating (e.g., choice of polymers or polyelectrolytes). Regardless of the surface coatings, the three ENPs exhibit comparable mobility in the quartz sand. However, the ENPs demonstrate variable transport potential in loamy sand suggesting that differences in the binding affinities of surface-modified ENPs for specific soil constituents can play a key role in the fate of ENPs in soils.


Assuntos
Nanopartículas/química , Poliestirenos/química , Pontos Quânticos , Dióxido de Silício/química , Cloreto de Cálcio/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Cloreto de Potássio/química , Propriedades de Superfície
16.
J Hazard Mater ; 438: 129408, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35820330

RESUMO

Single-use face masks can release microfibres upon exposure to environmental conditions. This study investigates the number of microfibres released in the presence and absence of UV irradiation and mechanical friction and the removal of the released microfibres in a simulated conventional wastewater treatment process. UV exposure results in a four-fold increase in the number of microfibres released from new masks and used masks resulting in ~2400 microfibres/mask and ~1100 microfibres/mask, respectively. Application of mechanical friction to the UV-exposed new and used masks further increases the number of released microfibres per mask. In a simulated coagulation/flocculation process, the removals of microfibers originating from new masks and used masks are 79% and 91%, respectively. XPS analysis reveals that the silica content of the used masks is 240% higher than that of new masks, which could explain the higher removal efficiency of microfibers from used masks. FTIR analysis of the masks after UV exposure shows carbonyl indices of 0.73 ± 0.70 and 0.27 ± 0.10 for the microfibres from used and new masks, respectively. Based on available data, we estimate that 4-47 million polypropylene microfibres can be released into natural waters per day after wastewater treatment in an urban environment (for a population of 4300 persons/km2).


Assuntos
Poluentes Químicos da Água , Purificação da Água , Máscaras , Plásticos , Poluentes Químicos da Água/análise
17.
J Hazard Mater ; 423(Pt A): 126955, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34488100

RESUMO

To date, most studies of microplastics have been carried out with pristine particles. However, most plastics in the environment will be aged to some extent; hence, understanding the effects of weathering and accurately mimicking weathering processes are crucial. By using microplastics that lack environmental relevance, we are unable to fully assess the risks associated with microplastic pollution in the environment. Emerging studies advocate for harmonization of experimental methods, however, the subject of reliable weathering protocols for realistic assessment has not been addressed. In this work, we critically analysed the current knowledge regarding protocols used for generating environmentally relevant microplastics and leachates for effects studies. We present the expected and overlooked weathering pathways that plastics will undergo throughout their lifecycle. International standard weathering protocols developed for polymers were critically analysed for their appropriateness for use in microplastics research. We show that most studies using weathered microplastics involve sorption experiments followed by toxicity assays. The most frequently reported weathered plastic types in the literature are polystyrene>polyethylene>polypropylene>polyvinyl chloride, which does not reflect the global plastic production and plastic types detected globally. Only ~10% of published effect studies have used aged microplastics and of these, only 12 use aged nanoplastics. This highlights the need to embrace the use of environmentally relevant microplastics and to pay critical attention to the appropriateness of the weathering methods adopted moving forward. We advocate for quality reporting of weathering protocols and characterisation for harmonization and reproducibility across different research efforts.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Plásticos/toxicidade , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Tempo (Meteorologia)
18.
Water Res ; 189: 116533, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271413

RESUMO

Despite plastic pollution being a significant environmental concern, the impact of environmental conditions such as temperature cycling on the fate of nanoplastics in cold climates remains unknown. To better understand nanoplastic mobility in subsurface environments following freezing and thawing cycles, the transport of 28 nm polystyrene nanoplastics exposed to either constant (10°C) temperature or freeze-thaw (FT) cycles (-10°C to 10°C) was investigated in saturated quartz sand. The stability and transport of nanoplastic suspensions were examined both in the presence and absence of natural organic matter (NOM) over a range of ionic strengths (3-100 mM NaCl). Exposure to 10 FT cycles consistently led to significant aggregation and reduced mobility compared to nanoplastics held at 10°C, especially at low ionic strengths in the absence of NOM. While NOM increased nanoplastic mobility, it did not prevent the aggregation of nanoplastics exposed to FT. We compare our findings with existing literature and show that nanoplastics will largely aggregate and associate with soils rather than undergo long range transport in groundwater in colder climates following freezing temperatures. In fact, FT exposure leads to the formation of stable aggregates that are not prone to disaggregation. As one of the first studies to examine the coupled effect of cold temperature and NOM, this work highlights the need to account for climate and temperature changes when assessing the risks associated with nanoplastic release in aquatic systems.


Assuntos
Água Subterrânea , Microplásticos , Congelamento , Plásticos , Poliestirenos
19.
Environ Microbiol Rep ; 12(2): 203-213, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31997572

RESUMO

The world's oceans are becoming increasingly polluted by plastic waste. In the marine environment, larger plastic pieces may degrade into nanoscale (<100 nm in at least one dimension) plastic particles due to natural weathering effects. We observe that the presence of 20 nm plastic nanoparticles at concentrations below 200 ppm had no impact on planktonic growth of a panel of heterotrophic marine bacteria. However, the presence of plastic nanoparticles significantly impacted the formation of biofilms in a species-specific manner. While carboxylated nanoparticles increased the amount of biofilm formed by several species, amidine-functionalized nanoparticles decreased the amount of biofilm of many but not all bacteria. Further experiments suggested that the aggregation dynamics of bacteria and nanoparticles were strongly impacted by the surface properties of the nanoparticles. The community structure of an artificially constructed community of marine bacteria was significantly altered by exposure to plastic nanoparticles, with differently functionalized nanoparticles selecting for unique and reproducible community abundance patterns. These results suggest that surface properties and concentration of plastic nanoparticles, as well as species interactions, are important factors determining how plastic nanoparticles impact biofilm formation by marine bacteria.


Assuntos
Bactérias , Biofilmes , Poliestirenos/farmacologia , Poluentes da Água , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/crescimento & desenvolvimento , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Nanopartículas , Oceanos e Mares , Plásticos/química , Plásticos/farmacologia , Água do Mar/microbiologia , Poluentes da Água/química , Poluentes da Água/farmacologia
20.
ACS Appl Mater Interfaces ; 12(36): 39991-40001, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32794770

RESUMO

In this study, a carboxyl-modified cellulosic hydrogel was developed as the base material for wound dressings. ε-poly-l-lysine, a natural polyamide, was then covalently linked to the hydrogel through a bioconjugation reaction, which was confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR). The antibacterial efficacy of the hydrogel was tested against two model bacteria, Staphylococcus aureus and Pseudomonas aeruginosa, two of the most commonly found bacteria in wound infections. Bacterial viability and biofilm formation after exposure of bacteria to the hydrogels were used as efficacy indicators. Live/Dead assay was used to measure the number of compromised bacteria using a confocal laser scanning microscope. The results show that the antibacterial hydrogel was able to kill approximately 99% of the exposed bacteria after 3 h of exposure. In addition, NIH/3T3 fibroblasts were used to study the biocompatibility of the developed hydrogels. Water-soluble tetrazolium salt (WST)-1 assay was used to measure the metabolic activity of the cells and Live/Dead assay was used to measure the viability of the cells after 24, 48, and 72 h. The developed antibacterial hydrogels are light weight, have a high water-uptake capacity, and show high biocompatibility with the model mammalian cells, which make them a promising candidate to be used for wound dressing applications.


Assuntos
Antibacterianos/farmacologia , Celulose/farmacologia , Hidrogéis/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Bandagens , Biofilmes/efeitos dos fármacos , Celulose/química , Relação Dose-Resposta a Droga , Hidrogéis/síntese química , Hidrogéis/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA