Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 11: 723821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616690

RESUMO

Ancient dental calculus, formed from dental plaque, is a rich source of ancient DNA and can provide information regarding the food and oral microbiology at that time. Genomic analysis of dental calculus from Neanderthals has revealed the difference in bacterial composition of oral microbiome between Neanderthals and modern humans. There are few reports investigating whether the pathogenic bacteria of periodontitis, a polymicrobial disease induced in response to the accumulation of dental plaque, were different between ancient and modern humans. This study aimed to compare the bacterial composition of the oral microbiome in ancient and modern human samples and to investigate whether lifestyle differences depending on the era have altered the bacterial composition of the oral microbiome and the causative bacteria of periodontitis. Additionally, we introduce a novel diagnostic approach for periodontitis in ancient skeletons using micro-computed tomography. Ancient 16S rDNA sequences were obtained from 12 samples at the Unko-in site (18th-19th century) of the Edo era (1603-1867), a characteristic period in Japan when immigrants were not accepted. Furthermore, modern 16S rDNA data from 53 samples were obtained from a database to compare the modern and ancient microbiome. The microbial co-occurrence network was analyzed based on 16S rDNA read abundance. Eubacterium species, Mollicutes species, and Treponema socranskii were the core species in the Edo co-occurrence network. The co-occurrence relationship between Actinomyces oricola and Eggerthella lenta appeared to have played a key role in causing periodontitis in the Edo era. However, Porphyromonas gingivalis, Fusobacterium nucleatum subsp. vincentii, and Prevotella pleuritidis were the core and highly abundant species in the co-occurrence network of modern samples. These results suggest the possibility of differences in the pathogens causing periodontitis during different eras in history.


Assuntos
Bactérias/classificação , Periodontite , Actinobacteria , Actinomyces , Fusobacterium , História do Século XVII , História do Século XVIII , História do Século XIX , Humanos , Japão , Periodontite/diagnóstico , Periodontite/história , Periodontite/microbiologia , Porphyromonas gingivalis , Prevotella , Treponema , Microtomografia por Raio-X
2.
PLoS One ; 15(3): e0226654, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32130218

RESUMO

Although there are many methods for reconstructing diets of the past, detailed taxon identification is still challenging, and most plants hardly remain at a site. In this study, we applied DNA metabarcoding to dental calculus of premodern Japan for the taxonomic identification of food items. DNA was extracted from 13 human dental calculi from the Unko-in site (18th-19th century) of the Edo period, Japan. Polymerase chain reaction (PCR) and sequencing were performed using a primer set specific to the genus Oryza because rice (Oryza sativa) was a staple food and this was the only member of this genus present in Japan at that time. DNA metabarcoding targeting plants, animals (meat and fish), and fungi were also carried out to investigate dietary diversity. We detected amplified products of the genus Oryza from more than half of the samples using PCR and Sanger sequencing. DNA metabarcoding enabled us to identify taxa of plants and fungi, although taxa of animals were not detected, except human. Most of the plant taxonomic groups (family/genus level) are present in Japan and include candidate species consumed as food at that time, as confirmed by historical literature. The other groups featured in the lifestyle of Edo people, such as for medicinal purposes and tobacco. The results indicate that plant DNA analysis from calculus provides information about food diversity and lifestyle habits from the past and can complement other analytical methods such as microparticle analysis and stable isotope analysis.


Assuntos
Arqueologia/métodos , DNA Antigo/isolamento & purificação , Cálculos Dentários/química , Comportamento Alimentar , Oryza/genética , Restos Mortais , Código de Barras de DNA Taxonômico , DNA Fúngico/isolamento & purificação , DNA de Plantas/isolamento & purificação , Feminino , Fungos/genética , História do Século XVIII , História do Século XIX , Humanos , Japão , Masculino , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA