Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068996

RESUMO

The skin is the outermost layer of the body and, therefore, is exposed to a variety of stressors, such as environmental pollutants, known to cause oxinflammatory reactions involved in the exacerbation of several skin conditions. Today, inflammasomes are recognized as important modulators of the cutaneous inflammatory status in response to air pollutants and ultraviolet (UV) light exposure. In this study, human skin explants were exposed to the best-recognized air pollutants, such as microplastics (MP), cigarette smoke (CS), diesel engine exhaust (DEE), ozone (O3), and UV, for 1 or 4 days, to explore how each pollutant can differently modulate markers of cutaneous oxinflammation. Exposure to environmental pollutants caused an altered oxidative stress response, accompanied by increased DNA damage and signs of premature skin aging. The effect of specific pollutants being able to exert different inflammasomes pathways (NLRP1, NLRP3, NLRP6, and NLRC4) was also investigated in terms of scaffold formation and cell pyroptosis. Among all environmental pollutants, O3, MP, and UV represented the main pollutants affecting cutaneous redox homeostasis; of note, the NLRP1 and NLRP6 inflammasomes were the main ones modulated by these outdoor stressors, suggesting their role as possible molecular targets in preventing skin disorders and the inflammaging events associated with environmental pollutant exposure.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Humanos , Inflamassomos/metabolismo , Poluentes Ambientais/metabolismo , Plásticos/metabolismo , Pele/metabolismo , Poluentes Atmosféricos/toxicidade
2.
IUBMB Life ; 74(1): 62-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34289226

RESUMO

Airborne pollution has become a leading cause of global death in industrialized cities and the exposure to environmental pollutants has been demonstrated to have adverse effects on human health. Among the pollutants, particulate matter (PM) is one of the most toxic and although its exposure has been more commonly correlated with respiratory diseases, gastrointestinal (GI) complications have also been reported as a consequence to PM exposure. Due to its composition, PM is able to exert on intestinal mucosa both direct damaging effects, (by reaching it either via direct ingestion of contaminated food and water or indirect inhalation and consequent macrophagic mucociliary clearance) and indirect ones via generation of systemic inflammation. The relationship between respiratory and GI conditions is well described by the lung-gut axis and more recently, has become even clearer during coronavirus disease 2019 (COVID-19) pandemic, when respiratory symptoms were associated with gastrointestinal conditions. This review aims at pointing out the mechanisms and the models used to evaluate PM induced GI tract damage.


Assuntos
COVID-19/etiologia , Trato Gastrointestinal/lesões , Material Particulado/toxicidade , SARS-CoV-2 , Administração por Inalação , Administração Oral , COVID-19/fisiopatologia , COVID-19/prevenção & controle , Trato Gastrointestinal/fisiopatologia , Humanos , Mucosa Intestinal/lesões , Mucosa Intestinal/fisiopatologia , Máscaras , Microplásticos/toxicidade , Modelos Biológicos , Depuração Mucociliar/fisiologia , Política Nutricional , Pandemias/prevenção & controle , Material Particulado/administração & dosagem , Sistema Respiratório/lesões , Sistema Respiratório/fisiopatologia
3.
Int J Mol Sci ; 23(15)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35955900

RESUMO

In this study, transethosomes were investigated as potential delivery systems for dimethyl fumarate. A formulative study was performed investigating the effect of the composition of transethosomes on the morphology and size of vesicles, as well as drug entrapment capacity, using cryogenic transmission electron microscopy, photon correlation spectroscopy, and HPLC. The stability of vesicles was evaluated, both for size increase and capability to control the drug degradation. Drug release kinetics and permeability profiles were evaluated in vitro using Franz cells, associated with different synthetic membranes. The in vitro viability, as well as the capacity to improve wound healing, were evaluated in human keratinocytes. Transmission electron microscopy enabled the evaluation of transethosome uptake and intracellular fate. Based on the obtained results, a transethosome gel was further formulated for the cutaneous application of dimethyl fumarate, the safety of which was evaluated in vivo with a patch test. It was found that the phosphatidylcholine concentration affected vesicle size and lamellarity, influencing the capacity to control dimethyl fumarate's chemical stability and release kinetics. Indeed, phosphatidylcholine 2.7% w/w led to multivesicular vesicles with 344 nm mean size, controlling the drug's chemical stability for at least 90 days. Conversely, phosphatidylcholine 0.9% w/w resulted in 130 nm sized unilamellar vesicles, which maintained 55% of the drug over 3 months. These latest kinds of transethosomes were able to improve wound healing in vitro and were easily internalised by keratinocytes. The selected transethosome gel, loading 25 mg/mL dimethyl fumarate, was not irritant after cutaneous application under occlusion, suggesting its possible suitability in the treatment of wounds caused by diabetes mellitus or peripheral vascular diseases.


Assuntos
Fumarato de Dimetilo , Absorção Cutânea , Administração Cutânea , Fumarato de Dimetilo/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Lipossomos/química , Fosfatidilcolinas/metabolismo , Pele/metabolismo
4.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069489

RESUMO

In this pilot study, ethosomes and transethosomes were investigated as potential delivery systems for cholecalciferol (vitamin D3), whose deficiency has been correlated to many disorders such as dermatological diseases, systemic infections, cancer and sarcopenia. A formulative study on the influence of pharmaceutically acceptable ionic and non-ionic surfactants allowed the preparation of different transethosomes. In vitro cytotoxicity was evaluated in different cell types representative of epithelial, connective and muscle tissue. Then, the selected nanocarriers were further investigated at light and transmission electron microscopy to evaluate their uptake and intracellular fate. Both ethosomes and transethosomes proven to have physicochemical properties optimal for transdermal penetration and efficient vitamin D3 loading; moreover, nanocarriers were easily internalized by all cell types, although they followed distinct intracellular fates: ethosomes persisted for long times inside the cytoplasm, without inducing subcellular alteration, while transethosomes underwent rapid degradation giving rise to an intracellular accumulation of lipids. These basic results provide a solid scientific background to in vivo investigations aimed at exploring the efficacy of vitamin D3 transdermal administration in different experimental and pathological conditions.


Assuntos
Colecalciferol/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanocápsulas/química , Linhagem Celular , Química Farmacêutica/métodos , Colecalciferol/metabolismo , Colecalciferol/farmacologia , Portadores de Fármacos/química , Fibroblastos/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Lipídeos/química , Lipossomos/química , Mioblastos/efeitos dos fármacos , Projetos Piloto , Pele/metabolismo , Absorção Cutânea , Tensoativos/metabolismo
5.
Exp Dermatol ; 24(6): 449-54, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25808217

RESUMO

This study describes the production and characterization of nanostructured lipid dispersions (NLDs) containing curcumin (CUR) as new tools for curcumin topical delivery. Four types of NLDs based on monoolein in association with different emulsifiers were produced: Na cholate and poloxamer 407 (NLD1), poloxamer alone (NLD2), the mixture of Na cholate and Na caseinate (NLD3) and Na cholate alone (NLD4). Morphology and dimensional distribution of lipid dispersions were investigated by cryo-TEM and photon correlation spectroscopy (PCS). In vitro studies based on Franz cell, membrane nylon and stratum corneum-epidermis (SCE) were carried out to compare the four NLDs in terms of cytotoxicity in human keratinocytes and CUR diffusion. Our PCS studies showed differences in particles diameter among the different NLDs. In addition, cytotoxicity results in HaCaT cells evidenced that NLD1 and NLD2 were toxic at doses over 1 µm. Therefore, cryo-TEM was determined only for NLD3 and NLD4 showing that CUR did not affect their structure. Diffusion measurement in SCE and nylon membrane evidenced that CUR had a time-delayed release for NLD4. The 'wound healing' effect of NLD3 and NLD4 with and without CUR analysed keratinocytes in vitro, and a clear inhibition of cell proliferation/migration by CUR was observed. This effect was mediated by the inhibition of cyclin D1 expression as a consequence of the impaired NFkB activation. This study confirms the antiproliferative properties of CUR and evidenced a new possible model of CUR topical delivery for hyperproliferative cutaneous diseases such as psoriasis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Curcumina/farmacologia , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Lipídeos , Nanoestruturas , Caseínas/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Microscopia Crioeletrônica , Curcumina/análise , Emulsificantes/química , Emulsificantes/farmacologia , Humanos , Técnicas In Vitro , Queratinócitos/ultraestrutura , Poloxâmero/farmacologia , Colato de Sódio/farmacologia
6.
Colloids Surf B Biointerfaces ; 185: 110613, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31715454

RESUMO

The present study describes the production and characterization of poloxamer gels containing the antioxidant molecule gallic acid. The gels were particularly designed in order to obtain a formulation suitable for administration on the skin to treat melanoma. The polymer concentration was selected after rheological characterization and determination of gel transition temperature. In order to study the gallic acid diffusion, in vitro experiments were performed using Franz cells associated to different membranes. As first approach the gallic acid diffusion was evaluated through synthetic membranes, such as cellulose, nylon, polycarbonate, polytetrafluoroethylene, polyvinylidene fluoride and the commercial Strat-M® membrane. The membranes were employed separately or in association and compared to stratum corneum epidermis membranes, in order to find a system able to reproduce the gallic acid diffusion through the skin. Selected membranes were used for studying gallic acid diffusion from poloxamer gel. It was found that the diffusion of gallic acid was dramatically influenced by the type of membrane, both in the case of the aqueous solution or poloxamer gel. Scratch wound healing and migration assays conducted on human keratinocytes and melanoma cells demonstrated the ability of gallic acid loaded gel to inhibit cellular migration, suggesting its potential as adjuvant strategy for melanoma.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Ácido Gálico/uso terapêutico , Géis/química , Melanoma/tratamento farmacológico , Poloxâmero/química , Adjuvantes Imunológicos/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Difusão , Elasticidade , Ácido Gálico/farmacologia , Humanos , Cinética , Transição de Fase , Reologia , Temperatura , Viscosidade , Cicatrização/efeitos dos fármacos
7.
Curr Drug Deliv ; 15(8): 1172-1182, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29779480

RESUMO

BACKGROUND: Wound healing is a biological process that can get in a state of pathologic inflammation, requiring the use of specific medications able to promote proper tissue repair. OBJECTIVE: The study describes the production and characterization of nanoparticle based gel for wound healing treatment designed to deliver hyaluronic acid and retinyl palmitate onto the skin. METHODS: Tristearin solid lipid nanoparticles and nanostructured lipid carriers based on a tristearin and caprylic/capric triglyceride mixture were produced and characterized. Gel spreadability and viscosity were investigated. Drug diffusion and "in vitro" wound healing were assessed by Franz cell and scratch wound assay in keratinocytes. RESULTS: Cryogenic transmission electron microscopy evidenced flat discoid nanoparticles. Photon correlation spectroscopy analysis indicated homogeneous dimensional distribution and mean diameter 132±46 nm. X-ray evidenced a lamellar inner structure of lipid nanoparticles. Nanostructured lipid carriers, being based on a heterogeneous solid/ liquid lipid mixture, could better solubilize retinyl palmitate and control its stability. The hyaluronic acid directly added into nanoparticles' dispersion enabled to obtain a shear-thinning gel suitable for cutaneous administration. Retynil palmitate diffusion was slower from the nanoparticulate gel with respect to the plain nanoparticle dispersion. The "wound healing" effect of nanoparticulate gel containing retinyl palmitate and hyaluronic acid, analyzed in HaCaT cells, showed significant differences in wounded areas between treated and control cells during the first 24 h postwounding suggesting a synergic effect of retinyl palmitate and hyaluronic acid in "in vitro" wound healing. CONCLUSIONS: This study suggests that a nanoparticle based hyaluronate gel containing retinyl palmitate can be efficiently used for wound healing.


Assuntos
Ácido Hialurônico/administração & dosagem , Nanopartículas/administração & dosagem , Vitamina A/análogos & derivados , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Microscopia Crioeletrônica , Diterpenos , Géis , Humanos , Ácido Hialurônico/química , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/ultraestrutura , Poloxâmero/administração & dosagem , Poloxâmero/química , Ésteres de Retinil , Triglicerídeos/administração & dosagem , Triglicerídeos/química , Viscosidade , Vitamina A/administração & dosagem , Vitamina A/química , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA