Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 2): 130771, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467220

RESUMO

Development of the efficient hemostatic materials is an essential requirement for the management of hemorrhage caused by the emergency situations to avert most of the casualties. Such injuries require the use of external hemostats to facilitate the immediate blood clotting. A variety of commercially available hemostats are present in the market but most of them are associated with limitations such as exothermic reactions, low biocompatibility, and painful removal. Thus, fabrication of an ideal hemostatic composition for rapid blood clot formation, biocompatibility, and antimicrobial nature presents a real challenge to the bioengineers. Benefiting from their tunable fabrication properties, alginate-based hemostats are gaining importance due to their excellent biocompatibility, with >85 % cell viability, high absorption capacity exceeding 500 %, and cost-effectiveness. Furthermore, studies have estimated that wounds treated with sodium alginate exhibited a blood loss of 0.40 ± 0.05 mL, compared to the control group with 1.15 ± 0.13 mL, indicating its inherent hemostatic activity. This serves as a solid foundation for designing future hemostatic materials. Nevertheless, various combinations have been explored to further enhance the hemostatic potential of sodium alginate. In this review, we have discussed the possible role of alginate based composite hemostats incorporated with different hemostatic agents, such as inorganic materials, polymers, biological agents, herbal agents, and synthetic drugs. This article outlines the challenges which need to be addressed before the clinical trials and give an overview of the future research directions.


Assuntos
Hemostáticos , Trombose , Humanos , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Alginatos/farmacologia , Hemostasia , Coagulação Sanguínea , Hemorragia/tratamento farmacológico
2.
Int J Biol Macromol ; 247: 125789, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37437679

RESUMO

The issue of wound dressing adherence poses a substantial challenge in the field of wound care, with implications both clinically and economically. Overcoming this challenge requires the development of a hydrogel dressing that enables painless removal without causing any secondary damage. However, addressing this issue still remains a significant challenge that requires attention and further exploration. The present study is focused on the synthesis of hydrogel membranes based on κ-carrageenan (CG), polyethylene glycol (PEG), and soy lecithin (LC), which can provide superior antioxidant and antibacterial attachment properties with a tissue anti adhesion activity for allowing an easy removability without causing secondary damage. The (CG-PEG)/LC mass ratio was varied to fabricate hydrogel membranes via a facile approach of physical blending and solution casting. The physicochemical properties of (CG-PEG)/LC hydrogel membranes were studied by scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and mechanical analyses. The membranes showed significantly enhanced mechanical properties with excellent flexibility and had high swelling capacity (˃1000 %), which would provide a moist condition for wound healing. The membranes also exhibited excellent free radical scavenging ability (>60 %). In addition, the (CG-PEG)/LC hydrogel membranes showed reduced peel strength 26.5 N/m as a result of weakening the hydrogel-gelatin interface during an in vitro gelatin peeling test. Moreover, the membrane showed superior antibacterial adhesion activity (>90 %) against both S. aureus and E. coli due to the presence of both PEG and LC. The results also suggested that the hydrogel membranes exhibit NIH3T3 cell antiadhesion property, making them promising material for easy detachment from the healed tissue without causing secondary damage. Thus, this novel combination of (CG-PEG)/LC hydrogel membranes have immense application potential as a biomaterial in the healthcare sector.


Assuntos
Escherichia coli , Lecitinas , Animais , Camundongos , Carragenina/farmacologia , Carragenina/química , Células NIH 3T3 , Gelatina , Staphylococcus aureus , Materiais Biocompatíveis/química , Antibacterianos/farmacologia , Antibacterianos/química , Hidrogéis/química , Polietilenoglicóis/química
3.
Int J Pharm ; 618: 121661, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35292394

RESUMO

The present study is aimed at fabricating thyme oil loaded hydrogel membranes composed of κ-carrageenan (CG) and polyethylene glycol (PEG), which can provide moist environment and prevent infections for rapid wound healing. Membranes were prepared with different amounts of PEG via solvent casting technique under ambient conditions. Physicochemical properties of CG-PEG membranes as a function of the PEG content were investigated. The surface morphology of membranes displayed smoother surfaces with increasing PEG content up to 40%. In addition, the interaction of PEG with CG polymer chains was evaluated in terms of Free and bound PEG fraction within the membrane matrix. Furthermore, thyme oil (TO) was added to enhance the antibacterial properties of CG-PEG membranes. These membranes showed >95% antimicrobial activity against both gram-positive and gram-negative bacteria depending on the TO content. Suggesting the great potential of these membranes as a strong candidate for providing an effective antimicrobial nature in human healthcare.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Biocompatíveis , Carragenina/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Hidrogéis/química , Óleos Voláteis/farmacologia , Óleos de Plantas , Polietilenoglicóis , Timol , Thymus (Planta)
4.
ACS Appl Bio Mater ; 4(7): 5449-5460, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35006726

RESUMO

The antimicrobial finishing is the most suitable alternative for designing medical textiles for biomedical applications. The present investigation aims at the preparation of skin-contacting khadi cotton fabric that would prevent microbial infection and offer excellent skin compatibility. A simple approach has been followed for the preparation of bioactive nanogels for antimicrobial finishing of the khadi cotton fabric. Bioactive nanogels were synthesized by using aloe vera (AV) as a reducing agent for silver ions in the presence of polyvinyl alcohol (PVA). PVA stabilizes the growth of silver nanoparticles, which is influenced by the variation in the reaction time and the temperature. Nanogels were characterized by transmission electron microscopy and scanning electron microscopy analyses. The nanogels exhibited strong antimicrobial behavior against both Staphylococcus aureus and Escherichia coli, as confirmed by the colony count method. Almost 100% antibacterial behavior was observed for the nanosilver content of 10 mM. The nanogel-finished khadi fabric showed bactericidal properties against both S. aureus and E. coli. The nanogel-finished fabric exhibited high hydrophilicity allowing complete water droplet penetration within 10 s as compared to 136 s in virgin fabric. Moreover, the skin irritation study of the fabric on male Swiss albino mice did not show any appearance of dermal toxicity. These results demonstrated that the bioactive finished khadi fabric is appropriate as skin contacting material in human health care.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Escherichia coli , Humanos , Masculino , Nanopartículas Metálicas/uso terapêutico , Camundongos , Nanogéis , Prata/farmacologia , Staphylococcus aureus , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA