RESUMO
Enzymatic hydrolysis of three pre-treated lignocellulosic biomasses -LCB- (wheat straw-WS-, corn stover-CSV- and cardoon stems -CS-) is studied. These biomasses were pre-treated by two methods: diluted sulfuric acid and acid ethanol-water extraction at six severity levels (H values). Pretreated solid fractions were hydrolyzed with commercial enzyme cocktails at standard conditions. A first-order kinetic fractal model was fitted to the experimental results. This model accurately describes the hydrolysis of all biomasses at all pre-treatment conditions studied. The results show that the formal first-order kinetic constant k depends on the biomass nature. The hydrolysis rate increases as the pre-treatment severity does, while the fractal exponent value h decreases. With these pre-treatments, and in terms of k and h, WS is highly reactive and, at medium H with EW pretreatment, highly accessible; CSV has a low reactivity and high accessibility and CS has the lowest reactivity and an increasing accessibility as severity rises.
Assuntos
Celulase , Biomassa , Fractais , Hidrólise , LigninaRESUMO
Liquor recycle in lignocellulosic biomass fractionation with ethanol-water has been studied. Runs have been carried out in a 6 L tank reactor with liquor recirculation. The liquors obtained in six successive fractioning operations have been analyzed together with the solid phase remnant. Experimental results revealed that the number of re-uses reduces solids recovery (from 52.2 to 42.6%) and cellulose recovery (from 28.1 to 23.3%) with minor or no effect on the hemicelluloses and lignin removal. The more remarkable effect is an increase of the glucose yield (from 76.7 to 95.3% after enzymatic hydrolysis during 72â¯h). The accumulation of acetic acid in the spent liquors (until 1.3â¯g/L) seems to be responsible of the higher enzymatic hydrolysis yield, from 76.3 (first use) to 87.7% (fifth re-use). Liquor re-use is effective to improve the sustainability of the pre-treatment obtaining a cellulose-rich solid easy to hydrolysate to sugars reducing energy consumption.
Assuntos
Bebidas Alcoólicas , Biomassa , Lignina/metabolismo , Ácido Acético/metabolismo , Fracionamento Químico/métodos , Etanol , Glucose/metabolismo , Hidrólise , ÁguaRESUMO
Ethanol-water (EW) and diluted sulfuric acid (DSA) pre-treatment have been studied for lignocellulosic biomass (corn stover, Cynara cardunculus L. stems and wheat straw). Both pre-treatments have been compared taken into account: solids recovery, glucans recovery, xylans removed, delignification and glucose yield. In all cases, the amount of energy involved has been taken as a criterion for sustainability. In general terms, EW is more efficient to remove lignin and DSA more appropriate to hydrolysate xylans. The combined effect of delignification and xylans removal is responsible for the improvement in the enzymatic cellulose hydrolysis. Under conditions of moderate-low energy inputs, EW pre-treatment yields better results than DSA with glucose yields in the range of 50-60% for EW pre-treated corn stover and cardoon stems; while wheat straw pulps reach up to 80%. So, multiple raw materials biorefinery needs a previous study to fit the type and conditions of the pre-treatment to each feedstock.
Assuntos
Cynara/metabolismo , Triticum/metabolismo , Zea mays/metabolismo , Biomassa , Celulose/metabolismo , Cynara/efeitos dos fármacos , Etanol/farmacologia , Hidrólise , Lignina/farmacologia , Ácidos Sulfúricos/farmacologia , Triticum/efeitos dos fármacos , Água/farmacologia , Xilanos/metabolismo , Zea mays/efeitos dos fármacosRESUMO
Enzymatic hydrolysis of corn stover was studied at agitation speeds from 50 to 500rpm in a stirred tank bioreactor, at high solid concentrations (20% w/w dry solid/suspension), 50°C and 15.5mgprotein·gglucane(-1). Two empirical kinetic models have been fitted to empirical data, namely: a potential model and a fractal one. For the former case, the global order dramatically decreases from 13 to 2 as agitation speed increases, suggesting an increment in the access of enzymes to cellulose in terms of chemisorption followed by hydrolysis. For its part, the fractal kinetic model fits better to data, showing its kinetic constant a constant augmentation with increasing agitation speed up to a constant value at 250rpm and above, when mass transfer limitations are overcome. In contrast, the fractal exponent decreases with rising agitation speed till circa 0.19, suggesting higher accessibility of enzymes to the substrate.
Assuntos
Ácidos/metabolismo , Celulose/metabolismo , Modelos Teóricos , Zea mays/enzimologia , Zea mays/metabolismo , Reatores Biológicos , Celulase , Fractais , Hidrólise , CinéticaRESUMO
The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (<150rpm), estimated mass transfer coefficients and rates, when compared to chemical hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run.
Assuntos
Biomassa , Lignina/química , Eliminação de Resíduos/métodos , Zea mays/química , Celulose/química , Hidrodinâmica , HidróliseRESUMO
Bacterial cellulose (BC) synthesized by Gluconacetobacter sucrofermentans CECT 7291 seems to be a good option for the restoration of degraded paper. In this work BC layers are cultivated and purified by two different methods: an alkaline treatment when the culture media contains ethanol and a thermal treatment if the media is free from ethanol. The main goal of these tests was the characterization of BC layers measured in terms of tear and burst indexes, optical properties, SEM, X-ray diffraction, FTIR, degree of polymerization, static and dynamic contact angles, and mercury intrusion porosimetry. The BC layers were also evaluated in the same terms after an aging treatment. Results showed that BC has got high crystallinity index, low internal porosity, good mechanical properties and high stability over time, especially when purified by the alkaline treatment. These features make BC an adequate candidate for degraded paper reinforcement.
Assuntos
Celulose/química , Papel , Celulose/isolamento & purificação , Celulose/metabolismo , Etanol/química , Gluconacetobacter/metabolismo , Temperatura Alta , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Viscosidade , Difração de Raios XRESUMO
Steam explosion and steam pre-treatment have proved capable of enhancing enzymatic saccharification of lignocellulosic materials. However, until now, these methods had not been compared under the same operational conditions and using the same raw material. Both pre-treatments lead to increased yields in the saccharification of Eucalyptus globulus; but results have been better with steam pre-treatments, despite the more accessible surface of exploded samples. The reason for this finding could be enzymatic inhibition: steam explosion causes a more extensive extraction of hemicelluloses and releases a greater amount of degradation products which can inhibit enzymatic action. Enzymatic inhibition is also dependent on the amount and chemical structure of lignin, which was also a contributing factor to the lower enzymatic yields obtained with the most severe pre-treatment. Thus, the highest yields (46.7% glucose and 73.4% xylose yields) were obtained after two cycle of steam treatment, of 5 and 3 min, at 183°C.
Assuntos
Biotecnologia/métodos , Metabolismo dos Carboidratos , Celulase/metabolismo , Eucalyptus/metabolismo , Vapor , Glucose/análise , Lignina/isolamento & purificação , Xilanos/isolamento & purificação , Xilose/análiseRESUMO
Growing interest in alternative and renewable energy sources has brought increasing attention to the integration of a pulp mill into a forest biorefinery, where other products could be produced in addition to pulp. To achieve this goal, hemicelluloses were extracted, either by steam explosion or by steam treatment, from Eucalyptus globulus wood prior to pulping. The effects of both pre-treatments in the subsequent kraft pulping and paper strength were evaluated. Results showed a similar degree of hemicelluloses extraction with both options (32-67% of pentosans), which increased with the severity of the conditions applied. Although both pre-treatments increased delignification during pulping, steam explosion was significantly better: 12.9 kappa number vs 22.6 for similar steam unexploded pulps and 40.7 for control pulp. Finally, similar reductions in paper strength were found regardless of the type of treatment and conditions assayed, which is attributed to the increase of curled and kinked fibers.
Assuntos
Biotecnologia/métodos , Eucalyptus/química , Papel , Polissacarídeos/isolamento & purificação , Vapor , Árvores/química , Celulose/química , Fracionamento Químico , Eucalyptus/efeitos dos fármacos , Hidrólise/efeitos dos fármacos , Lignina/química , Hidróxido de Sódio/farmacologia , Resistência à Tração/efeitos dos fármacos , Viscosidade/efeitos dos fármacos , Água/química , Madeira/químicaRESUMO
Eucalyptus globulus chips were steam exploded followed by treatment with a laccase-mediator system (LMS) under different experimental conditions. Removal of hemicelluloses and, to a lesser extent, lignin was observed. Thermogravimetic analyses of whole meal obtained from chips before and after steam explosion indicated an increase in lignin degradation temperature due to lignin condensation. In contrast, application of LMS treatment caused a reduction in lignin and polysaccharide degradation temperatures. Lignins were isolated from wood samples before and after each treatment and analyzed by 2D NMR and (13)C NMR. An increase in carboxyl and phenolic hydroxyl groups and a significant decrease in ß-O-4 structures were found in steam-exploded samples. The most relevant changes observed after laccase treatment were increased secondary OH and degree of condensation.