Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37895003

RESUMO

This work unveils the idea that the cariogenic status of the oral cavity (the presence of active caries lesions) can be predicted via a lineshape analysis of the infrared spectral signatures of the secondary structure of proteins in dental biofilms. These spectral signatures that work as natural markers also show strong sensitivity to the application in patients of a so-called modulator-a medicinal agent (a pelleted mineral complex with calcium glycerophosphate). For the first time, according to our knowledge, in terms of deconvolution of the complete spectral profile of the amide I and amide II bands, significant intra- and intergroup differences were determined in the secondary structure of proteins in the dental biofilm of patients with a healthy oral cavity and with a carious pathology. This allowed to conduct a mathematical assessment of the spectral shifts in proteins' secondary structure in connection with the cariogenic situation in the oral cavity and with an external modulation. It was shown that only for the component parallel ß-strands in the amide profile of the biofilm, a statistically significant (p < 0.05) change in its percentage weight (composition) was registered in a cariogenic situation (presence of active caries lesions). Note that no significant differences were detected in a normal situation (control) and in the presence of a carious pathology before and after the application of the modulator. The change in the frequency and percentage weight of parallel ß-strands in the spectra of dental biofilms proved to be the result of the presence of cariogenic mutans streptococci in the film as well as of the products of their metabolism-glucan polymers. We foresee that the results presented here can inherently provide the basis for the infrared spectral diagnosis of changes (shifts) in the oral microbiome driven by the development of the carious process in the oral cavity as well as for the choice of optimal therapeutic treatments of caries based on microbiome-directed prevention measures.


Assuntos
Cárie Dentária , Síncrotrons , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Streptococcus mutans , Biofilmes , Boca , Amidas
2.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36233001

RESUMO

Using a biomimetic strategy and bioinspired materials, our work proposed a new technological approach to create a hybrid transitional layer between enamel and dental biocomposite. For this purpose, an amino acid booster conditioner based on a set of polar amino acids (lysine, arginine, hyaluronic acid), calcium alkali, and a modified adhesive based on BisGMA and nanocrystalline carbonate-substituted hydroxyapatite are used during dental enamel restoration. The molecular properties of the hybrid interface formed using the proposed strategy were understood using methods of multivariate statistical analysis of spectral information collected using the technique of synchrotron infrared microspectroscopy. The results obtained indicate the possibility of forming a bonding that mimics the properties of natural tissue with controlled molecular properties in the hybrid layer. The diffusion of the amino acid booster conditioner component, the calcium alkali, and the modified adhesive with nanocrystalline carbonate-substituted hydroxyapatite in the hybrid interface region creates a structure that should stabilize the reconstituted crystalline enamel layer. The developed technology can form the basis for an individualized, personalized approach to dental enamel restorations.


Assuntos
Colagem Dentária , Dentina , Adesivos/química , Álcalis , Arginina , Biomimética , Cálcio , Esmalte Dentário , Durapatita/química , Ácido Hialurônico , Lisina , Teste de Materiais , Análise Multivariada , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons
3.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204524

RESUMO

The aim of this work is to develop a biomimetic interface between the natural tooth tissue and the restorative composite and to study it on the basis of synchrotron micro-FTIR mapping and multidimensional processing of the spectral data array. Using hierarchical cluster analysis of 3D FTIR data revealed marked improvements in the formation of the dentine/adhesive/dental hybrid interface using a biomimetic approach. The use of a biomimetic strategy (application of an amino acid-modified primer, alkaline calcium and a nano-c-HAp-modified adhesive) allowed the formation of a matrix that can be structurally integrated with natural dentine and dental composite. The biomimetic hybrid layer was characterised by homogeneous chemical composition and a higher degree of conversion of the adhesive during polymerisation, which should provide optimal integration of the dental composite with the dentine.


Assuntos
Biomimética , Odontologia , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons , Engenharia Tecidual , Dente , Biomimética/métodos , Odontologia/métodos , Humanos , Teste de Materiais , Nanotecnologia , Imagem Óptica/métodos
4.
Angew Chem Int Ed Engl ; 60(31): 17102-17107, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34043272

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in an unprecedented need for diagnostic testing that is critical in controlling the spread of COVID-19. We propose a portable infrared spectrometer with purpose-built transflection accessory for rapid point-of-care detection of COVID-19 markers in saliva. Initially, purified virion particles were characterized with Raman spectroscopy, synchrotron infrared (IR) and AFM-IR. A data set comprising 171 transflection infrared spectra from 29 subjects testing positive for SARS-CoV-2 by RT-qPCR and 28 testing negative, was modeled using Monte Carlo Double Cross Validation with 50 randomized test and model sets. The testing sensitivity was 93 % (27/29) with a specificity of 82 % (23/28) that included positive samples on the limit of detection for RT-qPCR. Herein, we demonstrate a proof-of-concept high throughput infrared COVID-19 test that is rapid, inexpensive, portable and utilizes sample self-collection thus minimizing the risk to healthcare workers and ideally suited to mass screening.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Saliva/química , Animais , Chlorocebus aethiops , Estudos de Coortes , Análise Discriminante , Humanos , Análise dos Mínimos Quadrados , Método de Monte Carlo , Testes Imediatos , Estudo de Prova de Conceito , SARS-CoV-2 , Sensibilidade e Especificidade , Manejo de Espécimes , Espectrofotometria Infravermelho , Células Vero
5.
Langmuir ; 35(6): 2422-2430, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30628784

RESUMO

The waxy epicuticle of dragonfly wings contains a unique nanostructured pattern that exhibits bactericidal properties. In light of emerging concerns of antibiotic resistance, these mechano-bactericidal surfaces represent a particularly novel solution by which bacterial colonization and the formation of biofilms on biomedical devices can be prevented. Pathogenic bacterial biofilms on medical implant surfaces cause a significant number of human deaths every year. The proposed mechanism of bactericidal activity is through mechanical cell rupture; however, this is not yet well understood and has not been well characterized. In this study, we used giant unilamellar vesicles (GUVs) as a simplified cell membrane model to investigate the nature of their interaction with the surface of the wings of two dragonfly species, Austrothemis nigrescens and Trithemis annulata, sourced from Victoria, Australia, and the Baix Ebre and Terra Alta regions of Catalonia, Spain. Confocal laser scanning microscopy and cryo-scanning electron microscopy techniques were used to visualize the interactions between the GUVs and the wing surfaces. When exposed to both natural and gold-coated wing surfaces, the GUVs were adsorbed on the surface, exhibiting significant deformation, in the process of membrane rupture. Differences between the tensile rupture limit of GUVs composed of 1,2-dioleoyl- sn-glycero-3-phosphocholine and the isotropic tension generated from the internal osmotic pressure were used to indirectly determine the membrane tensions, generated by the nanostructures present on the wing surfaces. These were estimated as being in excess of 6.8 mN m-1, the first experimental estimate of such mechano-bactericidal surfaces. This simple model provides a convenient bottom-up approach toward understanding and characterizing the bactericidal properties of nanostructured surfaces.


Assuntos
Nanoestruturas/química , Lipossomas Unilamelares/química , Asas de Animais/química , Adsorção , Animais , Odonatos/anatomia & histologia , Fosfatidilcolinas/química , Molhabilidade
6.
Biomimetics (Basel) ; 7(2)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35466252

RESUMO

The application of biomimetic strategies and nanotechnologies (nanodentology) has led to numerous innovations and provided a considerable impetus by creating a new class of modern adhesion restoration materials, including different nanofillers. An analysis of the molecular properties of biomimetic adhesives was performed in this work to find the optimal composition that provides high polymerisation and mechanical hardness. Nanocrystalline carbonate-substituted calcium hydroxyapatite (nano-cHAp) was used as the filler of the light-cured adhesive Bis-GMA (bisphenol A-glycidyl methacrylate). The characteristics of this substance correspond to the apatite of human enamel and dentin, as well as to the biogenic source of calcium: avian eggshells. The introduction and distribution of nano-cHAp fillers in the adhesive matrix resulted in changes in chemical bonding, which were observed using Fourier transform infrared (FTIR) spectroscopy. As a result of the chemical bonding, the Vickers hardness (VH) and the degree of conversion under photopolymerisation of the nano-cHAp/Bis-GMA adhesive increased for the specified concentration of nanofiller. This result could contribute to the application of the developed biomimetic adhesives and the clinical success of restorations.

7.
Pharmaceutics ; 14(7)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35890251

RESUMO

(1) Objectives: This study is the first one to investigate the molecular composition of the dental biofilm during the exogenous and endogenous prophylaxis stages (use of dentifrice/drug) of individuals with different cariogenic conditions using molecular spectroscopy methods. (2) Materials and Methods: The study involved 100 participants (50 males and 50 females), aged 18-25 years with different caries conditions. Biofilm samples were collected from the teeth surface of all participants. The molecular composition of biofilms was investigated using synchrotron infrared microspectroscopy. Changes in the molecular composition were studied through calculation and analysis of ratios between organic and mineral components of biofilm samples. (3) Results: Based on the data obtained by synchrotron FTIR, calculations of organic and mineral component ratios, and statistical analysis of the data, we were able to assess changes occurring in the molecular composition of the dental biofilm. Variations in the phosphate/protein/lipid, phosphate/mineral, and phospholipid/lipid ratios and the presence of statistically significant intra- and inter-group differences in these ratios indicate that the mechanisms of ion adsorption, compounds and complexes arriving from oral fluid into dental biofilm during exo/endogenous prophylaxis, differ for patients in norm and caries development. (4) Conclusions: The conformational environment and charge interaction in the microbiota and the electrostatic state of the biofilm protein network in patients with different cariogenic conditions play an important role. (5) Clinical Significance: Understanding the changes that occur in the molecular composition of the dental biofilm in different oral homeostasis conditions will enable successful transition to a personalised approach in dentistry and high-tech healthcare.

8.
Diagnostics (Basel) ; 11(7)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34359377

RESUMO

In this short communication, we provide information on the use of the hierarchical cluster analysis of synchrotron ATR-FTIR 2D chemical imaging spectral data as a useful and powerful approach to the microspectroscopic diagnostics of molecular composition in the hybrid sound dentin/dental composite interfaces and materials, including ones developed with the use of biomimetic strategies. The described diagnostic approach can be successfully transferred to the analysis and visualisation of 2D spectral data, collected using laboratory Raman and FTIR microspectroscopy techniques.

9.
Mater Sci Eng C Mater Biol Appl ; 122: 111831, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33641884

RESUMO

The management of respiratory diseases relies on the daily administration of multiple active pharmaceutical ingredients (APIs), leading to a lack of patient compliance and impaired quality of life. The frequency and dosage of the APIs result in increased side effects that further worsens the overall patient condition. Here, the manufacture of polymer-polymer core-shell microparticles for the sequential delivery of multiple APIs by inhalation delivery is reported. The microparticles, composed of biodegradable polymers silk fibroin (shell) and poly(L-lactic acid) (core), incorporating ciprofloxacin in the silk layer and ibuprofen (PLLA core) as the antibiotic and anti-inflammatory model APIs, respectively. The polymer-polymer core-shell structure and the spatial distribution of the APIs have been characterized using cutting-edge synchrotron macro ATR-FTIR technique, which was correlated with the respective API sequential release profiles. The APIs microparticles had a suitable size and aerosol properties for inhalation therapies (≤4.94 ± 0.21µm), with low cytotoxicity and immunogenicity in healthy lung epithelial cells. The APIs compartmentalization obtained by the microparticles not only could inhibit potential actives interactions but can provide modulation of the APIs release profiles via an inhalable single administration.


Assuntos
Polímeros , Qualidade de Vida , Administração por Inalação , Ciprofloxacina , Humanos , Ibuprofeno , Tamanho da Partícula
10.
J Colloid Interface Sci ; 587: 499-509, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33388652

RESUMO

Particle engineering for co-delivery of drugs has the potential to combine multiple drugs with different pharmaceutical mechanisms within the same carrier, increasing the therapeutic efficiency while improving patient compliance. This work proposes a novel approach for producing polymer-polymer core-shell microparticles by multi-step processing of emulsion and spray drying. The particle core was obtained by an oil-in-water emulsion of poly(ε-caprolactone) (PCL) loaded with curcumin (CM), followed by the resuspension in poly(vinyl alcohol) (PVA) containing ciprofloxacin (CPx) forming the shell layer by spray-drying. The obtained core-shell particles showed an average size of 3.8 ± 1.2 µm, which is a suitable size for inhalation therapies. The spatial distribution of the drugs was studied using synchrotron-based macro attenuated total reflection Fourier transform infrared (macro ATR-FTIR) microspectroscopy to map the chemical distribution of the components within the particles and supported the presence of CM and CPx in the core and shell layers, respectively. The formation of the core-shell structure was further supported by the differences in the release profile of CM from these particles, when compared to the release profile observed for the single particle structure (PCL-CM). Both empty and drug-loaded carriers (up to 100 µg.mL-1) showed no cytotoxic effects on A549 cells while exhibiting the antibacterial activity of CPx against Gram-positive and Gram-negative bacteria. These polymer core-shell microparticles provide a promising route for the combination and sequential drug release therapies, with the potential to be used in inhalation therapies.


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Portadores de Fármacos , Bactérias Gram-Positivas , Humanos , Tamanho da Partícula , Polímeros
11.
Sci Rep ; 10(1): 20891, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262412

RESUMO

This study is aimed at investigating the features of mineralization of the enamel apatite at initial stages of fluorosis development. Samples of teeth with intact and fluorotic enamel in an early stage of the disease development (Thylstrup-Fejerskov Index = 1-3) were studied by Raman scattering and FTIR using Infrared Microspectroscopy beamline at Australian Synchrotron equipment. Based on the data obtained by optical microspectroscopy and calculation of the coefficient R [A-type/B-type], which represents the ratio of carbonation fraction of CO32-, replacing phosphate or hydroxyl radicals in the enamel apatite lattice, the features of mineralization of enamel apatite in the initial stages of development of the pathology caused by an increased content of fluorine in the oral cavity were established. Statistical analysis of the data showed significant differences in the mean values of R [A-type/B-type] ratio between the control and experimental groups for surface layers (p < 0.01). The data obtained are potentially significant as benchmarks in the development of a new approach to preventive diagnostics of the development of initial and clinically unregistered stages of human teeth fluorosis, as well as personalized control of the use of fluoride-containing caries-preventive agents.


Assuntos
Fluorose Dentária/diagnóstico , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Carbonatos , Cárie Dentária/prevenção & controle , Esmalte Dentário/química , Diagnóstico Precoce , Fluoretos , Humanos , Fosfatos
12.
Sovrem Tekhnologii Med ; 12(1): 43-50, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34513036

RESUMO

The aim of the investigation was to study the integration between native human dental tissue and new-generation biomimetic materials replicating the mineral-organic complex of dentin and enamel using IR microspectroscopy for multidimensional visualization and analysis. MATERIALS AND METHODS: The conditions for stable integration at the interface between biomimetic material and natural hard tissue were identified using a biocomposite buffer system of nanocrystalline carbonate-substituted calcium hydroxyapatite corresponding in its total characteristics to human dentin-enamel apatite and a number of amino acids present in the organic matrix of dentin and enamel: L-histidine, L-lysine hydrochloride, L-arginine hydrochloride, and hyaluronic acid. The finished samples were studied using IR microspectroscopy on IRM channel equipment (The Australian Synchrotron, Melbourne, Australia). RESULTS: The characteristic features of the biomimetic buffer layer at the interface between the enamel and dental material were revealed and visualized based on IR mapping of absorption intensity for particular functional molecular groups with the use of synchrotron radiation, location of the functional groups involved in the processes of biomimetic composite integration was identified.

13.
Biomed Opt Express ; 10(8): 4050-4058, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31452994

RESUMO

The aim of our work is to find a spectroscopic signature of the pathological processes of carious dentine based on the investigations of the molecular composition of the oral biological fluids with the use of FTIR synchrotron techniques. This complex analysis of the obtained data shows that a number of signatures are present only in the spectra of dentine and gingival fluids from the patients developing caries of the deep dentine tissues. The detected features and complex analysis of the quantitative and qualitative data representing signatures of the development of oral cavity pathologies can enhance the quality of dental screening.

14.
J Colloid Interface Sci ; 553: 720-733, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31254870

RESUMO

HYPOTHESIS: Odd-even effects in polysaccharide polyelectrolyte multilayers influence their hydration content and the chemical environment of the water within them. EXPERIMENTS: Polysaccharide polyelectrolyte multilayers (PEMs) composed of pharmaceutical grade fucoidan and chitosan were studied under confinement using synchrotron FTIR microspectroscopy at increasing pressure, in order to isolate and measure infrared spectra of water within the PEM, without interference from bulk water. Complementary studies of the PEMs were carried out using lab-based in situ attenuated total reflectance Fourier transform spectroscopy (ATR FTIR) and quartz crystal microbalance with dissipation monitoring (QCM-D), as well as zeta potential measurements, to determine the quantity of adsorbed polymer, hydration content, film thickness, viscoelastic properties and surface charge during layer-by-layer deposition. FINDINGS: The hydration of the PEM followed a saw-tooth profile, known as the odd-even effect, where the film increased hydration with fucoidan adsorption and dehydrated/densified with chitosan adsorption. The water structure within the film showed a lower degree of hydrogen bonding than water in the bulk electrolyte. However, the water structure/environment was independent of the terminating layer of the PEM, in spite of the alteration in percentage hydration water, indicating only a partial proof of the initial hypothesis for this multilayer system (hydration amount changes, hydration water environment does not).

15.
PLoS One ; 12(12): e0188345, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29253012

RESUMO

Surface modification of polymers and paints is a popular and effective way to enhance the properties of these materials. This can be achieved by introducing a thin coating that preserves the bulk properties of the material, while protecting it from environmental exposure. Suitable materials for such coating technologies are inorganic oxides, such as alumina, titania and silica; however, the fate of these materials during long-term environmental exposure is an open question. In this study, polymer coatings that had been enhanced with the addition of silica nanoparticles (SiO2NPs) and subsequently subjected to environmental exposure, were characterized both before and after the exposure to determine any structural changes resulting from the exposure. High-resolution synchrotron macro ATR-FTIR microspectroscopy and surface topographic techniques, including optical profilometry and atomic force microscopy (AFM), were used to determine the long-term effect of the environment on these dual protection layers after 3 years of exposure to tropical and sub-tropical climates in Singapore and Queensland (Australia). Principal component analysis (PCA) based on the synchrotron macro ATR-FTIR spectral data revealed that, for the 9% (w/w) SiO2NP/polymer coating, a clear discrimination was observed between the control group (no environmental exposure) and those samples subjected to three years of environmental exposure in both Singapore and Queensland. The PCA loading plots indicated that, over the three year exposure period, a major change occurred in the triazine ring vibration in the melamine resins. This can be attributed to the triazine ring being very sensitive to hydrolysis under the high humidity conditions in tropical/sub-tropical environments. This work provides the first direct molecular evidence, acquired using a high-resolution mapping technique, of the climate-induced chemical evolution of a polyester coating. The observed changes in the surface topography of the coating are consistent with the changes in chemical composition.


Assuntos
Materiais Revestidos Biocompatíveis/química , Umidade , Microespectrofotometria , Nanopartículas/química , Poliésteres/química , Dióxido de Silício/química , Aço/química , Síncrotrons , Meio Ambiente , Espectroscopia Fotoeletrônica , Análise de Componente Principal , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Raios Ultravioleta , Água/química , Molhabilidade
16.
ACS Appl Mater Interfaces ; 9(28): 24381-24392, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28640578

RESUMO

Nature has produced many intriguing and spectacular surfaces at the micro- and nanoscales. These small surface decorations act for a singular or, in most cases, a range of functions. The minute landscape found on the lotus leaf is one such example, displaying antiwetting behavior and low adhesion with foreign particulate matter. Indeed the lotus leaf has often been considered the "benchmark" for such properties. One could expect that there are animal counterparts of this self-drying and self-cleaning surface system. In this study, we show that the planthopper insect wing (Desudaba danae) exhibits a remarkable architectural similarity to the lotus leaf surface. Not only does the wing demonstrate a topographical likeness, but some surface properties are also expressed, such as nonwetting behavior and low adhering forces with contaminants. In addition, the insect-wing cuticle exhibits an antibacterial property in which Gram-negative bacteria (Porphyromonas gingivalis) are killed over many consecutive waves of attacks over 7 days. In contrast, eukaryote cell associations, upon contact with the insect membrane, lead to a formation of integrated cell sheets (e.g., among human stem cells (SHED-MSC) and human dermal fibroblasts (HDF)). The multifunctional features of the insect membrane provide a potential natural template for man-made applications in which specific control of liquid, solid, and biological contacts is desired and required. Moreover, the planthopper wing cuticle provides a "new" natural surface with which numerous interfacial properties can be explored for a range of comparative studies with both natural and man-made materials.


Assuntos
Lotus , Animais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Insetos , Folhas de Planta , Propriedades de Superfície
17.
J Vis Exp ; (116)2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27768041

RESUMO

Corrosion of metallic surfaces is prevalent in the environment and is of great concern in many areas, including the military, transport, aviation, building and food industries, amongst others. Polyester and coatings containing both polyester and silica nanoparticles (SiO2NPs) have been widely used to protect steel substrata from corrosion. In this study, we utilized X-ray photoelectron spectroscopy, attenuated total reflection infrared micro-spectroscopy, water contact angle measurements, optical profiling and atomic force microscopy to provide an insight into how exposure to sunlight can cause changes in the micro- and nanoscale integrity of the coatings. No significant change in surface micro-topography was detected using optical profilometry, however, statistically significant nanoscale changes to the surface were detected using atomic force microscopy. Analysis of the X-ray photoelectron spectroscopy and attenuated total reflection infrared micro-spectroscopy data revealed that degradation of the ester groups had occurred through exposure to ultraviolet light to form COO·, -H2C·, -O·, -CO· radicals. During the degradation process, CO and CO2 were also produced.


Assuntos
Nanopartículas , Dióxido de Silício , Luz Solar , Corrosão , Microscopia de Força Atômica , Poliésteres , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA