Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445587

RESUMO

Over the past few decades, long acting injectable (LAI) depots of polylactide-co-glycolide (PLGA) or polylactic acid (PLA) based microspheres have been developed for controlled drug delivery to reduce dosing frequency and to improve the therapeutic effects. Biopharmaceuticals such as proteins and peptides are encapsulated in the microspheres to increase their bioavailability and provide a long release period (days or months) with constant drug plasma concentration. The biodegradable and biocompatible properties of PLGA/PLA polymers, including but not limited to molecular weight, end group, lactide to glycolide ratio, and minor manufacturing changes, could greatly affect the quality attributes of microsphere formulations such as release profile, size, encapsulation efficiency, and bioactivity of biopharmaceuticals. Besides, the encapsulated proteins/peptides are susceptible to harsh processing conditions associated with microsphere fabrication methods, including exposure to organic solvent, shear stress, and temperature fluctuations. The protein/peptide containing LAI microspheres in clinical use is typically prepared by double emulsion, coacervation, and spray drying techniques. The purpose of this review is to provide an overview of the formulation attributes and conventional manufacturing techniques of LAI microspheres that are currently in clinical use for protein/peptides. Furthermore, the physicochemical characteristics of the microsphere formulations are deliberated.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Microesferas , Fragmentos de Peptídeos/administração & dosagem , Poliésteres/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Proteínas/administração & dosagem , Animais , Composição de Medicamentos , Humanos , Fragmentos de Peptídeos/química , Proteínas/química
2.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361779

RESUMO

Delivering nucleic acids into the endothelium has great potential in treating vascular diseases. However, endothelial cells, which line the vasculature, are considered as sensitive in nature and hard to transfect. Low transfection efficacies in endothelial cells limit their potential therapeutic applications. Towards improving the transfection efficiency, we made an effort to understand the internalization of lipoplexes into the cells, which is the first and most critical step in nucleic acid transfections. In this study, we demonstrated that the transient modulation of caveolae/lipid rafts mediated endocytosis with the cholesterol-sequestrating agents, nystatin, filipin III, and siRNA against Cav-1, which significantly increased the transfection properties of cationic lipid-(2-hydroxy-N-methyl-N,N-bis(2-tetradecanamidoethyl)ethanaminium chloride), namely, amide liposomes in combination with 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) (AD Liposomes) in liver sinusoidal endothelial cells (SK-Hep1). In particular, nystatin was found to be highly effective with 2-3-fold enhanced transfection efficacy when compared with amide liposomes in combination with Cholesterol (AC), by switching lipoplex internalization predominantly through clathrin-mediated endocytosis and macropinocytosis.


Assuntos
Cavéolas/efeitos dos fármacos , Colesterol/química , Células Endoteliais/efeitos dos fármacos , Lipossomos/química , Microdomínios da Membrana/efeitos dos fármacos , Transfecção/métodos , Animais , Cavéolas/química , Cavéolas/metabolismo , Caveolina 1/antagonistas & inibidores , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular Transformada , Colesterol/metabolismo , Clatrina/metabolismo , DNA/química , DNA/metabolismo , Endocitose/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Filipina/química , Filipina/farmacologia , Expressão Gênica , Lipossomos/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Nistatina/química , Nistatina/farmacologia , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/farmacologia , Pinocitose/efeitos dos fármacos , Plasmídeos/química , Plasmídeos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos
3.
ACS Appl Mater Interfaces ; 14(13): 14859-14870, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35347979

RESUMO

Long-term application of topical therapeutics for psoriasis has a plethora of side effects. Additionally, skin-permeating agents used in their formulations for deeper dermal delivery damage the skin. To address these limitations, we developed novel lithocholic acid analogues that could form lipid nanoparticles (nano-LCs) spontaneously in the aqueous milieu, permeate through the skin, penetrate the deeper dermal layers, and exert anti-inflammatory effects against psoriasis-like chronic skin inflammations. Prior findings demonstrated that lithocholic acid acts as a vitamin D receptor agonist without affecting the Ca+2 metabolism and also as an antagonist for ephrin type-A receptor 2 (EphA2). Taking cues from the previous findings, lithocholic acid derivatives with twin alkyl chains (LC6, LC8, LC10, and LC-12) were synthesized, nanoparticles (nano-LCs) were prepared, and they were evaluated for their skin permeability and anti-inflammatory properties. Among these nano-LCs, nano-LC10 demonstrated superior anti-inflammatory properties and inhibition of keratinocyte proliferation in various cell-based evaluations. Furthermore, the therapeutic efficiency of nano-LC10 was evaluated in an imiquimod-induced psoriasis-like mouse model and demonstrated comparable efficiency with the standard topical formulation, Sorvate, in reducing skin inflammations. Nano-LC10 also reduced systemic inflammation, organ toxicity, and also proinflammatory serum cytokine levels. Overall, nano-lithocholic lipidoid (nano-LC10) can be a potential novel class of therapeutics for topical application in treating psoriasis.


Assuntos
Nanopartículas , Psoríase , Animais , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipossomos , Camundongos , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Pele
4.
Biochim Biophys Acta Biomembr ; 1861(1): 327-334, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29902420

RESUMO

Intracellular delivery of nucleic acids is one of the critical steps in the transfections. Prior findings demonstrated various strategies including membrane fusion, endosomal escape for the efficient cytoplasmic delivery. In our continuing efforts to improve the nucleic acids transfections, we harnessed cell permeable properties of Tomatidine (T), a steroidal alkaloid abundantly found in green tomatoes for maximizing intracellular delivery of lipoplexes. We doped Tomatidine into liposomes of cationic lipid with amide linker (A) from our lipid library. Six liposomal formulations (AT) of Lipid A (1 mM) with varying concentrations of Tomatidine (0-1 mM) were prepared and evaluated for their transfection efficacies. Owing to its signature characteristic of cell membrane permeability, Tomatidine modulated endocytosis process, enhanced the intracellular delivery of the lipoplexes, and in turn increased the transfection efficacy of cationic liposomes. Our findings provide 'proof of concept' for enhancing transfections in gene delivery applications with Tomatidine in cationic liposomal formulations. These findings can be further applied in lipid mediated gene therapy and drug delivery applications.


Assuntos
Permeabilidade da Membrana Celular , Membrana Celular/efeitos dos fármacos , Ácidos Nucleicos/química , Tomatina/análogos & derivados , Transfecção/métodos , Alcaloides/química , Cátions , Endocitose , Endossomos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/química , Células HEK293 , Humanos , Lipídeos/química , Lipossomos/química , Células MCF-7 , Fusão de Membrana , Plasmídeos/metabolismo , Esteroides/química , Tomatina/química , beta-Galactosidase/metabolismo
5.
Colloids Surf B Biointerfaces ; 152: 133-142, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28103530

RESUMO

Development of safe non-viral carrier systems for efficient intra-cellular delivery of drugs and genes hold promise in the area of translational research. Liposome based delivery systems have emerged as one of the attractive strategies for efficient delivery of drugs and nucleic acids. To this end, number of investigations was carried on liposomal formulations using lipids for achieving higher efficiency in transfection with lower cytotoxicities. In our efforts to develop safer and efficient liposomal delivery systems, we synthesized a novel anti-oxidant lipid, α-lipoyl, oleyl-sn-phosphatidylcholine (LOPC) and used as a helper lipid in combination with a cationic amphiphile, Di-Stearyl Dihydroxy Ethyl Ammonium Chloride (DSDEAC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) at varying concentrations of LOPC. DNA binding properties of the liposomal formulations (DS, DS LA1, DS LA2 and DS LA3) revealed that increasing the percentage of single aliphatic chain lipid LOPC, did not affect the DNA binding properties. But, transfection profiles of these liposomal formulations in 3 different cell lines (HeLa, HEK 293 and MCF7) showed difference in their efficacies. Results showed that optimal percentage of LOPC i.e. 25% in DSDEAC and DOPC at 1:1 molar ratio (DS LA1) enhanced transfection as compared to DSDEAC:DOPC alone. The endosomal escape studies with NBD labelled lysotracker and Rhodamine labelled liposomal formulations revealed that DS LA1 and DS LA2 facilitated the release of genetic cargo with a better efficiency than their counter parts. Reactive Oxygen Species (ROS), a key modulator of necroptosis were lowered with the treatment of DS LA1 than other liposomal formulations. Here in, we present a novel liposomal formulation using DSDEAC and DOPC at 1:1 molar ratio doped with 25-50% (mole ratio) LOPC as an efficient delivery system for enhanced transfection with quenching of ROS levels compared to formulations without LOPC.


Assuntos
Antioxidantes/química , Lipossomos/química , Fosfatidilcolinas/química , Ácido Tióctico/química , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo , Transfecção
6.
J Control Release ; 170(1): 51-63, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23643662

RESUMO

The barrier properties of the skin pose a significant but not insurmountable obstacle for development of new effective anti-inflammatory therapies. The objective of this study was to design and evaluate therapeutic efficacy of anti-nociception agent Capsaicin (Cap) and anti-TNFα siRNA (siTNFα) encapsulated cyclic cationic head lipid-polymer hybrid nanocarriers (CyLiPns) against chronic skin inflammatory diseases. Physico-chemical characterizations including hydrodynamic size, surface potential and entrapment efficacies of CyLiPns were found to be 163±9nm, 35.14±8.23mV and 92% for Cap, respectively. In vitro skin distribution studies revealed that CyLiPns could effectively deliver FITC-siRNA up to 360µm skin depth. Further, enhanced (p<0.001) Cap permeation from CyLiPns was observed compared to Capsaicin-Solution and Capzasin-HP. Therapeutic efficacies of CyLiPns were assessed using imiquamod-induced psoriatic plaque like model. CyLiPns carrying both Cap and siTNFα showed significant reduced expression of TNFα, NF-κB, IL-17, IL-23 and Ki-67 genes compared to either drugs alone (p<0.05) and were in close comparison with Topgraf®. Collectively these findings support our notion that novel cationic lipid-polymer hybrid nanoparticles can efficiently carry siTNFα and Cap into deeper dermal milieu and Cap with a combination of siTNFα shows synergism in treating skin inflammation.


Assuntos
Anti-Inflamatórios/administração & dosagem , Capsaicina/administração & dosagem , Dermatite/tratamento farmacológico , Nanopartículas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Administração Cutânea , Animais , Sobrevivência Celular/efeitos dos fármacos , Dermatite/metabolismo , Células HEK293 , Humanos , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Antígeno Ki-67/metabolismo , Lipídeos/química , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Nanopartículas/química , Polímeros/química , Ratos , Ratos Pelados , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA