Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Langmuir ; 30(32): 9780-8, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25062385

RESUMO

The entrapment of nanolipoprotein particles (NLPs) and liposomes in transparent, nanoporous silica gel derived from the precursor tetramethylorthosilicate was investigated. NLPs are discoidal patches of lipid bilayer that are belted by amphiphilic scaffold proteins and have an average thickness of 5 nm. The NLPs in this work had a diameter of roughly 15 nm and utilized membrane scaffold protein (MSP), a genetically altered variant of apolipoprotein A-I. Liposomes have previously been examined inside of silica sol-gels and have been shown to exhibit instability. This is attributed to their size (∼150 nm) and altered structure and constrained lipid dynamics upon entrapment within the nanometer-scale pores (5-50 nm) of the silica gel. By contrast, the dimensional match of NLPs with the intrinsic pore sizes of silica gel opens the possibility for their entrapment without disruption. Here we demonstrate that NLPs are more compatible with the nanometer-scale size of the porous environment by analysis of lipid phase behavior via fluorescence anisotropy and analysis of scaffold protein secondary structure via circular dichroism spectroscopy. Our results showed that the lipid phase behavior of NLPs entrapped inside of silica gel display closer resemblance to its solution behavior, more so than liposomes, and that the MSP in the NLPs maintain the high degree of α-helix secondary structure associated with functional protein-lipid interactions after entrapment. We also examined the effects of residual methanol on lipid phase behavior and the size of NLPs and found that it exerts different influences in solution and in silica gel; unlike in free solution, silica entrapment may be inhibiting NLP size increase and/or aggregation. These findings set precedence for a bioinorganic hybrid nanomaterial that could incorporate functional integral membrane proteins.


Assuntos
Nanopartículas/química , Sílica Gel/química , Apolipoproteína A-I/química , Nanoestruturas/química , Polimetil Metacrilato/química
2.
J Biol Chem ; 285(42): 32486-93, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20693280

RESUMO

Synucleins and apolipoproteins have been implicated in a number of membrane and lipid trafficking events. Lipid interaction for both types of proteins is mediated by 11 amino acid repeats that form amphipathic helices. This similarity suggests that synucleins and apolipoproteins might have comparable effects on lipid membranes, but this has not been shown directly. Here, we find that α-synuclein, ß-synuclein, and apolipoprotein A-1 have the conserved functional ability to induce membrane curvature and to convert large vesicles into highly curved membrane tubules and vesicles. The resulting structures are morphologically similar to those generated by amphiphysin, a curvature-inducing protein involved in endocytosis. Unlike amphiphysin, however, synucleins and apolipoproteins do not require any scaffolding domains and curvature induction is mediated by the membrane insertion and wedging of amphipathic helices alone. Moreover, we frequently observed that α-synuclein caused membrane structures that had the appearance of nascent budding vesicles. The ability to function as a minimal machinery for vesicle budding agrees well with recent findings that α-synuclein plays a role in vesicle trafficking and enhances endocytosis. Induction of membrane curvature must be under strict regulation in vivo; however, as we find it can also cause disruption of membrane integrity. Because the degree of membrane curvature induction depends on the concerted action of multiple proteins, controlling the local protein density of tubulating proteins may be important. How cellular safeguarding mechanisms prevent such potentially toxic events and whether they go awry in disease remains to be determined.


Assuntos
Apolipoproteína A-I/química , Membrana Celular/química , alfa-Sinucleína/química , beta-Sinucleína/química , Animais , Apolipoproteína A-I/metabolismo , Membrana Celular/ultraestrutura , Humanos , Lipossomos/química , Lipossomos/ultraestrutura , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , alfa-Sinucleína/metabolismo , beta-Sinucleína/metabolismo
3.
J Lipid Res ; 51(9): 2731-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20472870

RESUMO

The ability to exogenously present cell-surface receptors in high-affinity conformations in a synthetic system offers an opportunity to provide host cells with protection from pathogenic toxins. This strategy requires improvement of the synthetic receptor binding affinity against its native counterpart, particularly with polyvalent toxins where clustering of membrane receptors can hinder binding. Here we demonstrate that reconstituted lipoprotein, nanometer-sized discoidal lipid bilayers bounded by apolipoprotein and functionalized by incorporation of pathogen receptors, provides a means to enhance toxin-receptor binding through molecular-level control over the receptor microenvironment (specifically, its rigidity, composition, and heterogeneity). Using a Foerster Resonance Energy Transfer (FRET)-based assay, we found that reconstituted lipoprotein incorporating low concentrations of ganglioside monosialotetrahexosylganglioside (GM1) binds polymeric cholera toxin with significantly higher affinity than liposomes or supported lipid bilayers, most likely a result of the enhanced control over receptor clustering provided by the lipoprotein platform. Using wide-area epifluorescence, we found that this enhanced binding capacity can be effectively utilized to divert cholera toxin away from populations of healthy mammalian cells. In summary, we found that reconstitutions of high-density lipoprotein can be engineered to include specific pathogen receptors; that their pathogen binding affinity is altered, presumably due to attenuation of receptor aggregation; and that these assemblies are effective at protecting cells from biological toxins.


Assuntos
Toxina da Cólera/metabolismo , Gangliosídeos , Lipoproteínas , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Células Cultivadas , Transferência Ressonante de Energia de Fluorescência , Gangliosídeos/química , Gangliosídeos/metabolismo , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Ligação Proteica , Epitélio Pigmentado da Retina/citologia
4.
J Mater Chem B ; 8(38): 8845-8852, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33026405

RESUMO

Using a regular CMOS sensor as a template, we are able to fabricate a simple but highly effective superhydrophobic SERS substrate. Specifically, we decorated the microlens layer of the sensor with 7 µm polystyrene beads to obtain a PDMS patterned replica. The process resulted in a uniform pattern of voids in the PDMS (denoted nanobowls) that are intercalated with a few larger voids (denoted here microbowls). The voids act as superhydrophobic substrates with analyte concentration capabilities in bigger bowl-like structures. Silver nanoparticles were directly grown on the patterned PDMS substrate inside both the nano- and microbowls, and serve as strong electromagnetic field enhancers for the SERS substrate. After systematic characterization of the fabricated SERS substrate by atomic force microscopy and scanning electron microscopy, we demonstrated its SERS performance using 4-aminothiophenol as a reporter molecule. Finally, we employed this innovative substrate to concentrate and analyze extracellular vesicles (EVs) isolated from an MC65 neural cell line in an ultralow sample volume. This substrate can be further exploited for the investigation of various EV biomarkers for early diagnosis of different diseases using liquid biopsy.


Assuntos
Dimetilpolisiloxanos/química , Vesículas Extracelulares/metabolismo , Nanopartículas Metálicas/química , Dispositivos Ópticos , Poliestirenos/química , Compostos de Anilina/química , Linhagem Celular Tumoral , Vesículas Extracelulares/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Prata/química , Análise Espectral Raman/métodos , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA