Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Prosthet Dent ; 129(2): 293-300, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34144789

RESUMO

STATEMENT OF PROBLEM: Artificial intelligence (AI) applications are growing in dental implant procedures. The current expansion and performance of AI models in implant dentistry applications have not yet been systematically documented and analyzed. PURPOSE: The purpose of this systematic review was to assess the performance of AI models in implant dentistry for implant type recognition, implant success prediction by using patient risk factors and ontology criteria, and implant design optimization combining finite element analysis (FEA) calculations and AI models. MATERIAL AND METHODS: An electronic systematic review was completed in 5 databases: MEDLINE/PubMed, EMBASE, World of Science, Cochrane, and Scopus. A manual search was also conducted. Peer-reviewed studies that developed AI models for implant type recognition, implant success prediction, and implant design optimization were included. The search strategy included articles published until February 21, 2021. Two investigators independently evaluated the quality of the studies by applying the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Quasi-Experimental Studies (nonrandomized experimental studies). A third investigator was consulted to resolve lack of consensus. RESULTS: Seventeen articles were included: 7 investigations analyzed AI models for implant type recognition, 7 studies included AI prediction models for implant success forecast, and 3 studies evaluated AI models for optimization of implant designs. The AI models developed to recognize implant type by using periapical and panoramic images obtained an overall accuracy outcome ranging from 93.8% to 98%. The models to predict osteointegration success or implant success by using different input data varied among the studies, ranging from 62.4% to 80.5%. Finally, the studies that developed AI models to optimize implant designs seem to agree on the applicability of AI models to improve the design of dental implants. This improvement includes minimizing the stress at the implant-bone interface by 36.6% compared with the finite element model; optimizing the implant design porosity, length, and diameter to improve the finite element calculations; or accurately determining the elastic modulus of the implant-bone interface. CONCLUSIONS: AI models for implant type recognition, implant success prediction, and implant design optimization have demonstrated great potential but are still in development. Additional studies are indispensable to the further development and assessment of the clinical performance of AI models for those implant dentistry applications reviewed.


Assuntos
Inteligência Artificial , Implantes Dentários , Humanos , Implantação Dentária Endóssea , Porosidade
2.
J Prosthet Dent ; 129(2): 276-292, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34281697

RESUMO

STATEMENT OF PROBLEM: Artificial intelligence applications are increasing in prosthodontics. Still, the current development and performance of artificial intelligence in prosthodontic applications has not yet been systematically documented and analyzed. PURPOSE: The purpose of this systematic review was to assess the performance of the artificial intelligence models in prosthodontics for tooth shade selection, automation of restoration design, mapping the tooth preparation finishing line, optimizing the manufacturing casting, predicting facial changes in patients with removable prostheses, and designing removable partial dentures. MATERIAL AND METHODS: An electronic systematic review was performed in MEDLINE/PubMed, EMBASE, Web of Science, Cochrane, and Scopus. A manual search was also conducted. Studies with artificial intelligence models were selected based on 6 criteria: tooth shade selection, automated fabrication of dental restorations, mapping the finishing line of tooth preparations, optimizing the manufacturing casting process, predicting facial changes in patients with removable prostheses, and designing removable partial dentures. Two investigators independently evaluated the quality assessment of the studies by applying the Joanna Briggs Institute Critical Appraisal Checklist for Quasi-Experimental Studies (nonrandomized experimental studies). A third investigator was consulted to resolve lack of consensus. RESULTS: A total of 36 articles were reviewed and classified into 6 groups based on the application of the artificial intelligence model. One article reported on the development of an artificial intelligence model for tooth shade selection, reporting better shade matching than with conventional visual selection; 14 articles reported on the feasibility of automated design of dental restorations using different artificial intelligence models; 1 artificial intelligence model was able to mark the margin line without manual interaction with an average accuracy ranging from 90.6% to 97.4%; 2 investigations developed artificial intelligence algorithms for optimizing the manufacturing casting process, reporting an improvement of the design process, minimizing the porosity on the cast metal, and reducing the overall manufacturing time; 1 study proposed an artificial intelligence model that was able to predict facial changes in patients using removable prostheses; and 17 investigations that developed clinical decision support, expert systems for designing removable partial dentures for clinicians and educational purposes, computer-aided learning with video interactive programs for student learning, and automated removable partial denture design. CONCLUSIONS: Artificial intelligence models have shown the potential for providing a reliable diagnostic tool for tooth shade selection, automated restoration design, mapping the preparation finishing line, optimizing the manufacturing casting, predicting facial changes in patients with removable prostheses, and designing removable partial dentures, but they are still in development. Additional studies are needed to further develop and assess their clinical performance.


Assuntos
Implantes Dentários , Prótese Parcial Removível , Dente , Humanos , Prostodontia , Inteligência Artificial , Assistência Odontológica
3.
J Prosthet Dent ; 128(5): 867-875, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33840515

RESUMO

STATEMENT OF PROBLEM: Artificial intelligence (AI) applications are increasing in restorative procedures. However, the current development and performance of AI in restorative dentistry applications has not yet been systematically documented and analyzed. PURPOSE: The purpose of this systematic review was to identify and evaluate the ability of AI models in restorative dentistry to diagnose dental caries and vertical tooth fracture, detect tooth preparation margins, and predict restoration failure. MATERIAL AND METHODS: An electronic systematic review was performed in 5 databases: MEDLINE/PubMed, EMBASE, World of Science, Cochrane, and Scopus. A manual search was also conducted. Studies with AI models were selected based on 4 criteria: diagnosis of dental caries, diagnosis of vertical tooth fracture, detection of the tooth preparation finishing line, and prediction of restoration failure. Two investigators independently evaluated the quality assessment of the studies by applying the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Quasi-Experimental Studies (nonrandomized experimental studies). A third investigator was consulted to resolve lack of consensus. RESULTS: A total of 34 articles were included in the review: 29 studies included AI techniques for the diagnosis of dental caries or the elaboration of caries and postsensitivity prediction models, 2 for the diagnosis of vertical tooth fracture, 1 for the tooth preparation finishing line location, and 2 for the prediction of the restoration failure. Among the studies reviewed, the AI models tested obtained a caries diagnosis accuracy ranging from 76% to 88.3%, sensitivity ranging from 73% to 90%, and specificity ranging from 61.5% to 93%. The caries prediction accuracy among the studies ranged from 83.6% to 97.1%. The studies reported an accuracy for the vertical tooth fracture diagnosis ranging from 88.3% to 95.7%. The article using AI models to locate the finishing line reported an accuracy ranging from 90.6% to 97.4%. CONCLUSIONS: AI models have the potential to provide a powerful tool for assisting in the diagnosis of caries and vertical tooth fracture, detecting the tooth preparation margin, and predicting restoration failure. However, the dental applications of AI models are still in development. Further studies are required to assess the clinical performance of AI models in restorative dentistry.


Assuntos
Cárie Dentária , Fraturas dos Dentes , Humanos , Restauração Dentária Permanente/métodos , Cárie Dentária/diagnóstico , Cárie Dentária/terapia , Inteligência Artificial , Odontologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA