Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomedicine ; 43: 102547, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35292367

RESUMO

Baicalin (BA) has a good intervention effect on encephalopathy. In this study, macrophage membrane was modified on the surface of baicalin liposomes (BA-LP) by extrusion method. Macrophage membrane modified BA-LP (MM-BA-LP) was characterized by various analytical techniques, and evaluated for brain targeting. The results presented MM-BA-LP had better brain targeting compared with BA-LP. Pharmacokinetic experiments showed that MM-BA-LP improved pharmacokinetic parameters and increased the residence time of BA. Pharmacodynamic of middle cerebral artery occlusion (MCAO) rat model was studied to verify the therapeutic effect of MM-BA-LP on cerebral ischemia reperfusion injury (CIRI). The results showed that MM-BA-LP could significantly improve the neurological deficit, cerebral infarction volume and brain pathological state of MCAO rats compared with BA-LP. These results suggested that MM-BA-LP could significantly enhance the brain targeting and improve the circulation of BA in blood, and had a significantly better neuroprotective effect on MCAO rats than BA-LP.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Encéfalo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Flavonoides , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Lipossomos/farmacocinética , Macrófagos , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico
2.
AAPS PharmSciTech ; 22(7): 222, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34409515

RESUMO

Geniposide (GE) possesses excellent neuroprotective effects but with poor brain targeting and short half-life. Liposome was considered to have great potential for brain diseases. Therefore, this research aimed to develop a geniposide liposome (GE-LP) as a brain delivery system for cerebral ischemia reperfusion injury (CIRI) therapy and evaluate its characterization, pharmacokinetics, brain targeting, and neuroprotective effects in vivo. Then, a reverse-phase evaporation method was applied to develop the GE-LP and optimize the formulation. Notably, the GE-LP had suitable size, which was 223.8 nm. Subsequently, the pharmacokinetic behavior of GE solution and GE-LP in mice plasma was investigated, and the brain targeting was also researched. The results showed that GE in plasma of GE-LP displayed three folds longer distribution half-life and a higher bioavailability and brain targeting compared to GE solution. In vivo neuroprotective effects was evaluated through the middle cerebral artery occlusion (MCAO) rat model, and GE-LP exhibited a stronger tendency in preventing the injury of CIRI, which can significantly improve neurological deficits. Overall, this study demonstrates GE-LP as a new formulation with ease of preparation, sustained release, and high brain targeting, which has significant development prospects on CIRI; this is expected to improve the efficacy of GE and reduce the frequency of administration.


Assuntos
Iridoides , Lipossomos , Traumatismo por Reperfusão , Animais , Encéfalo , Camundongos , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico
3.
Mediators Inflamm ; 2020: 8414062, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33223957

RESUMO

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are challenging diseases with the high mortality in a clinical setting. Baicalin (BA) is the main effective constituent isolated from the Chinese medical herb Scutellaria baicalensis Georgi, and studies have proved that it has a protective effect on ALI induced by lipopolysaccharide (LPS) due to the anti-inflammatory efficacy. However, BA has low solubility which may limit its clinical application. Hence, we prepared a novel drug delivery system-Baicalin liposome (BA-LP) in previous research-which can improve some physical properties of BA. Therefore, we aimed to explore the effect of BA-LP on ALI mice induced by LPS. In pharmacokinetics study, the values of t 1/2 and AUC0- t in the BA-LP group were significantly higher than that of the BA group in normal mice, indicating that BA-LP could prolong the duration time in vivo of BA. The BA-LP group also showed a higher concentration in lung tissues than the BA group. Pharmacodynamics studies showed that BA-LP had a better effect than the BA group at the same dosage on reducing the W/D ratio, alleviating the lung injury score, and decreasing the proinflammatory factors (TNF-α, IL-1ß) and total proteins in bronchoalveolar lavage fluids (BALF). In addition, the therapeutic effects of BA-LP showed a dose-dependent manner. Western blot analysis indicated that the anti-inflammatory action of BA could be attributed to the inhibition of the TLR4-NFκBp65 and JNK-ERK signaling pathways. These results suggest that BA-LP could be a valuable therapeutic candidate in the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Flavonoides/química , Regulação da Expressão Gênica , Lipopolissacarídeos/química , Lipossomos/química , Extratos Vegetais/farmacologia , Animais , Área Sob a Curva , Sistemas de Liberação de Medicamentos , Medicamentos de Ervas Chinesas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inflamação , MAP Quinase Quinase 4/metabolismo , Masculino , Medicina Tradicional Chinesa , Camundongos , Subunidade p50 de NF-kappa B/metabolismo , Análise de Regressão , Reprodutibilidade dos Testes , Scutellaria baicalensis , Transdução de Sinais/efeitos dos fármacos , Distribuição Tecidual , Receptor 4 Toll-Like/metabolismo
4.
Biomed Pharmacother ; 160: 114240, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36731339

RESUMO

Baicalin (BA) is widely used in the treatment of cerebral ischemia-reperfusion injury (CIRI). The key to treating encephalopathy is to increase the amounts of drugs entering the brain. Borneol-baicalin liposome (BO-BA-LP) was prepared in previous research based on the characteristics of borneol (BO) in promoting drug brain entry. In this study, the effect of BO-BA-LP on improving blood-brain barrier (BBB) integrity was researched. Results showed BO-BA-LP may increase ability of BA to penetrate the cell membrane in vitro. Pharmacokinetic results showed the BO-BA-LP could increase concentrations of BA in plasma and brain tissues of normal and CIRI mice. Pharmacological results revealed BO-BA-LP could improve the neurological function, brain edema, and histopathology of CIRI mice. Besides, BO-BA-LP could protect BBB by regulating hypoxia inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF)/endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) pathway. The research showed that BO in BO-BA-LP could increase the absorption of BA by increasing BBB permeability, leading to a better therapeutic effect of BO-BA-LP on CIRI mice.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Lipossomos/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Encéfalo/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
5.
Int J Nanomedicine ; 15: 5977-5989, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32904394

RESUMO

PURPOSE: Baicalin (BA) has a good neuroprotective effect, but it is eliminated quickly in the body and does not easily reach the brain. In this experiment, borneol (BO) was used as an auxiliary drug to prepare borneol-baicalin-liposomes (BO-BA-LP) to prolong the efficacy time of BA, synergistically synergize, introduce drugs into the brain, and better exert the therapeutic effect on cerebral ischemia-reperfusion (I/R) injury. METHODS: Through single-factor inspection and response surface optimization analysis, obtained the best preparation process of BO-BA-LP and characterized by various analytical techniques. Validated the long-term effectiveness of BA-BO-LP through pharmacokinetic studies and conducted pharmacodynamic studies on the middle cerebral artery occlusion (MCAO) rat model to verify the therapeutic effect of BO-BA-LP on cerebral I/R injury. RESULTS: The optimum preparation conditions of BO-BA-LP were as follows: the dosage of BO was 9.55 mg, the ratio of phospholipid to drug was 4.02:1, the ratio of phospholipid to cholesterol was 7.25:1, the entrapment efficiency (EE) was 41.49%, and the drug loading (DL) was 4.29%. The particle size range of the liposomes was 167.1 nm, and the polydispersity index (PDI) range was 0.113. The results of pharmacokinetic experiments showed that the combination of BA and BO liposomes effectively improved the pharmacokinetic parameters of BA and prolonged the half-life of BA. Pharmacodynamic studies have found that, compared with BA-LP, BO-BA-LP can significantly improve neurological deficits, cerebral infarction volume, and brain pathological states on MCAO rats. CONCLUSION: These results demonstrated that BO-BA-LP can improve the circulation of drugs in the blood, and the addition of BO can enhance the therapeutic effect of BA and effectively improve cerebral I/R.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Canfanos/farmacologia , Flavonoides/farmacologia , Lipossomos/química , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Canfanos/administração & dosagem , Canfanos/farmacocinética , Sinergismo Farmacológico , Flavonoides/administração & dosagem , Flavonoides/química , Flavonoides/farmacocinética , Meia-Vida , Infarto da Artéria Cerebral Média , Lipossomos/farmacocinética , Lipossomos/farmacologia , Masculino , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/farmacologia , Fosfolipídeos/química , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA