Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430611

RESUMO

Primary Sjögren's syndrome (pSS) is a chronic, systemic autoimmune disease defined by exocrine gland hypofunction resulting in dry eyes and dry mouth. Despite increasing interest in biological therapies for pSS, achieving FDA-approval has been challenging due to numerous complications in the trials. The current literature lacks insight into a molecular-target-based approach to the development of biological therapies. This review focuses on novel research in newly defined drug targets and the latest clinical trials for pSS treatment. A literature search was conducted on ClinicalTrials.gov using the search term "Primary Sjögren's syndrome". Articles published in English between 2000 and 2021 were included. Our findings revealed potential targets for pSS treatment in clinical trials and the most recent advances in understanding the molecular mechanisms underlying the pathogenesis of pSS. A prominent gap in current trials is in overlooking the treatment of extraglandular symptoms such as fatigue, depression, and anxiety, which are present in most patients with pSS. Based on dryness and these symptom-directed therapies, emerging biological agents targeting inflammatory cytokines, signal pathways, and immune reaction have been studied and their efficacy and safety have been proven. Novel therapies may complement existing non-pharmacological methods of alleviating symptoms of pSS. Better grading systems that add extraglandular symptoms to gauge disease activity and severity should be created. The future of pSS therapies may lie in gene, stem-cell, and tissue-engineering therapies.


Assuntos
Ceratoconjuntivite Seca , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/tratamento farmacológico , Ansiedade , Transtornos de Ansiedade , Citocinas
2.
Nanotechnology ; 28(12): 125102, 2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28163261

RESUMO

Polyethylenimine (PEI), a commercially available gene transfection reagent, is a promising nonviral vector due to its inherent ability to efficiently condense genetic materials and its successful transfection performance in vitro. However, its low transfection efficiency in vivo, along with its high cytotoxicity, limit any further applications in gene therapy. To enhance the gene transfection performance and reduce the cytotoxicity of linear polyethylenimine, pseudopolyrotaxane PEI25k/CD and the polyrotaxanes PEI25k/CD-PA and PEI25k/CD-PB were prepared and their transfection efficiencies were then evaluated. The pseudopolyrotaxane PEI25k/CD exhibited better transfection efficiency and lower cytotoxicity than the transfection reagent linear PEI25k, even in the presence of serum. It also showed a remarkably higher cell viability, similar DNA protecting capability, and better DNA decondensation and release ability, and could be useful for the development of novel and safe nonviral gene delivery vectors for gene therapy.


Assuntos
Materiais Biocompatíveis/química , Ciclodextrinas/química , Poloxâmero/química , Polietilenoimina/química , Rotaxanos/química , Transfecção/métodos , alfa-Ciclodextrinas/química , Sobrevivência Celular , DNA/metabolismo , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Tamanho da Partícula , Soro/metabolismo , Eletricidade Estática
3.
Nanotechnology ; 28(46): 465101, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-28905810

RESUMO

The nano self-assembly profiles of amphiphilic gene delivery vectors could improve the density of local cationic head groups to promote their DNA condensation capability and enhance the interaction between cell membrane and hydrophobic tails, thus increasing cellular uptake and gene transfection. In this paper, two series of cationic amphiphilic ß-cyclodextrin (ß-CD) derivatives were designed and synthesized by using 6-mono-OTs-ß-CD (1) as the precursor to construct amphiphilic gene vectors with different building blocks in a selective and controlled manner. The effect of different type and degree of cationic head groups on transfection and the endocytic mechanism of ß-CD derivatives/DNA nanocomplexes were also investigated. The results demonstrated that the designed ß-cyclodextrin derivatives were able to compact DNA to form stable nanocomplexes and exhibited low cytotoxicity. Among them, PEI-1 with PEI head group showed enhanced transfection activity, significantly higher than commercially available agent PEI25000 especially in the presence of serum, showing potential application prospects in clinical trials. Moreover, the endocytic uptake mechanism involved in the gene transfection of PEI-1 was mainly through caveolae-mediated endocytosis, which could avoid the lysosomal degradation of loaded gene, and had great importance for improving gene transfection activity.


Assuntos
Vetores Genéticos , Nanopartículas/química , Transfecção/métodos , beta-Ciclodextrinas , DNA/química , DNA/farmacologia , Vetores Genéticos/química , Vetores Genéticos/farmacologia , Células HEK293 , Humanos , Iminas/química , Iminas/farmacologia , Polietilenos/química , Polietilenos/farmacologia , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia
4.
Bioorg Med Chem Lett ; 26(10): 2401-2407, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27072908

RESUMO

Cholesterol derivatives M1-M6 as synthetic cationic lipids were designed and the biological evaluation of the cationic liposomes based on them as non-viral gene delivery vectors were described. Plasmid pEGFP-N1, used as model gene, was transferred into 293T cells by cationic liposomes formed with M1-M6 and transfection efficiency and GFP expression were tested. Cationic liposomes prepared with cationic lipids M1-M6 exhibited good transfection activity, and the transfection activity was parallel (M2 and M4) or superior (M1 and M6) to that of DC-Chol derived from the same backbone. Among them, the transfection efficiency of cationic lipid M6 was parallel to that of the commercially available Lipofectamine2000. The optimal formulation of M1 and M6 were found to be at a mol ratio of 1:0.5 for cationic lipid/DOPE, and at a N/P charge mol ratio of 3:1 for liposome/DNA. Under optimized conditions, the efficiency of M1 and M6 is greater than that of all the tested commercial liposomes DC-Chol and Lipofectamine2000, even in the presence of serum. The results indicated that M1 and M6 exhibited low cytotoxicity, good serum compatibility and efficient transfection performance, having the potential of being excellent non-viral vectors for gene delivery.


Assuntos
Colesterol/química , Terapia Genética/métodos , Lipídeos/química , Lipossomos/química , Relação Estrutura-Atividade , Colesterol/análogos & derivados , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Lipídeos/síntese química , Tamanho da Partícula , Fosfatidiletanolaminas/química , Soro/química , Transfecção/métodos
5.
Biol Pharm Bull ; 39(7): 1112-20, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27118165

RESUMO

In this work two novel cationic lipids using natural tartaric acid as linking backbone were synthesized. These cationic lipids were simply constructed by tartaric acid backbone using head group 6-aminocaproic acid and saturated hydrocarbon chains dodecanol (T-C12-AH) or hexadecanol (T-C16-AH). The physicochemical properties, gel electrophoresis, transfection activities, and cytotoxicity of cationic liposomes were tested. The optimum formulation for T-C12-AH and T-C16-AH was at cationic lipid/dioleoylphosphatidylethanolamine (DOPE) molar ratio of 1 : 0.5 and 1 : 2, respectively, and N/P charge molar ratio of 1 : 1 and 1 : 1, respectively. Under optimized conditions, T-C12-AH and T-C16-AH showed effective gene transfection capabilities, superior or comparable to that of commercially available transfecting reagent 3ß-[N-(N',N'-dimethylaminoethyl)carbamoyl]cholesterol (DC-Chol) and N-[2,3-dioleoyloxypropyl]-N,N,N-trimethylammonium chloride (DOTAP). The results demonstrated that the two novel tartaric acid-based cationic lipids exhibited low toxicity and efficient transfection performance, offering an excellent prospect as nonviral vectors for gene delivery.


Assuntos
Técnicas de Transferência de Genes , Lipídeos/química , Tartaratos/química , Ácido Aminocaproico , Sobrevivência Celular/efeitos dos fármacos , DNA/administração & dosagem , DNA/química , Proteínas de Fluorescência Verde/genética , Células HEK293 , Células HeLa , Humanos , Lipossomos/química , Lipossomos/farmacologia
6.
Int J Mol Sci ; 16(3): 5666-81, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25768346

RESUMO

The design, synthesis and biological evaluation of the cationic lipid gene delivery vectors based on cholesterol and natural amino acids lysine or histidine are described. Cationic liposomes composed of the newly synthesized cationic lipids 1a or 1b and neutral lipid DOPE (1,2-dioleoyl-L-α-glycero-3-phosphatidyl-ethanolamine) exhibited good transfection efficiency. pEGFP-N1 plasmid DNA was transferred into 293T cells by cationic liposomes formed from cationic lipids 1a and 1b, and the transfection activity of the cationic lipids was superior (1a) or parallel (1b) to that of the commercially available 3ß-[N-(N',N'-dimethylaminoethyl)-carbamoyl] cholesterol (DC-Chol) derived from the same cholesterol backbone with different head groups. Combined with the results of agarose gel electrophoresis, transfection experiments with various molar ratios of the cationic lipids and DOPE and N/P (+/-) molar charge ratios, a more effective formulation was formed, which could lead to relatively high transfection efficiency. Cationic lipid 1a represents a potential agent for the liposome used in gene delivery due to low cytotoxicity and impressive gene transfection activity.


Assuntos
Colesterol/análogos & derivados , DNA/metabolismo , Cátions/química , Sobrevivência Celular/efeitos dos fármacos , Colesterol/química , DNA/química , Células HEK293 , Humanos , Lipídeos/síntese química , Lipídeos/química , Lipídeos/toxicidade , Lipossomos/química , Lipossomos/toxicidade , Microscopia de Fluorescência , Tamanho da Partícula , Fosfatidiletanolaminas/química , Transfecção
7.
J Biomed Nanotechnol ; 15(8): 1654-1672, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31219018

RESUMO

Stimuli-responsive materials are promising paradigm applied to construct diagnostic and therapeutic intracellular controlled release vectors, while highlighting many challenges and opportunities. In this paper, six α-cyclodextrin-based supramolecular nanovectors were constructed and the efficacy of amine groups, stimuli-responsive profiles and endocytic mechanisms were investigated. The results indicated that the designed supermolecules can compact DNA to form stable complexes and display low cytotoxicity. Among them, PRPEI-2 with suitable PEI amine group exhibited enhanced transfecting performance, high dilution stability, nice serum compatibility, and good acid-responsive profiles to enable endosome escape, significantly higher than commercially available transfecting agent PEI25000, the most effective vector studied to date. The endocytic uptake mechanisms involved in the transfection was mainly through clathrin-mediated pathway, which is closely associated with and can be improved by endosome escape. Moreover, PRPEI-2/DNA polyplex can be effectively expressed in vivo even after 48 h via only single tail-vein injection, and the gene expression and main tissue distribution appeared in the testis, liver, brain and spleen. These excellent characteristics demonstrated that the supramolecular PRPEI-2 represents an excellent prospect as stimuli-responsive nanovectors for gene diagnosis and therapy.


Assuntos
Técnicas de Transferência de Genes , DNA , Endossomos , Polietilenoimina , Transfecção , alfa-Ciclodextrinas
8.
Materials (Basel) ; 11(10)2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287747

RESUMO

Calcium phosphate ceramics used in dentistry and orthopedics are some of the most valuable biomaterials, owing to their excellent osteoconduction, osteoinduction, and osseointegration. Osteoconduction and osteoinduction are critical targets for bone regeneration, and osseointegration is essential for any dental implantations. In this study, a hydroxyapatite (HAp) hybrid coating layer with the sequential release of bone morphogenetic protein 2 (BMP-2) was deposited onto an etched titanium substrate by electrochemical deposition. The resulting release of BMP-2 from Ti⁻HAp was assessed by immersing samples in a simulated buffer fluid solution. Through coculture, human osteosarcoma cell proliferation and alkaline phosphatase activity were assessed. The characteristics and effect on cell proliferation of the hybrid coatings were investigated for their functionality through X-ray diffraction (XRD) and cell proliferation assays. Findings revealed that -0.8 V vs. Ag/AgCl (3 M KCl) exhibited the optimal HAp properties and a successfully coated HAp layer. XRD confirmed the crystallinity of the deposited HAp on the titanium surface. Ti-0.8 V Ti⁻HAp co-coating BMP sample exhibited the highest cell proliferation efficiency and was more favorable for cell growth. A successful biocompatible hybrid coating with optimized redox voltage enhanced the osseointegration process. The findings suggest that this technique could have promising clinical applications to enhance the healing times and success rates of dental implantation.

9.
Protein Pept Lett ; 20(11): 1189-99, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23746111

RESUMO

In this study, the influence of isoleucine and arginine on the biological activity and peptide-membrane interactions of linear avian ß-defensin-4 (RL38) analogs was investigated. Results of biological activities showed that the antimicrobial activities of AvBD-4 analogs were closely related to hydrophobicity and amphipathicity. The peptide GLI19 with high hydrophobicity value and amphipathicity displayed broad spectrum antimicrobial activity against both gram-negative and gram-positive, whereas GLR19 with increasing multiple charges only exhibited activity against gram-negative. The interaction between peptides and the liposome membrane demonstrated that the peptides preferentially bound to negatively charged phospholipids over zwitterionic phospholipids, which supported the antimicrobial activity data. The outer membranes assay further demonstrated that GLI19 had a greater capacity than the other tested peptides to penetrate the cell membrane at a low concentration. Collectively, the peptides derived from the bactericidal domain of linear ß- defensins by truncation and hydrophobic amino acid substitution may be effective high-potential antibacterial agents.


Assuntos
Arginina/química , Isoleucina/química , Peptídeos/síntese química , beta-Defensinas/química , Substituição de Aminoácidos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Aves , Dicroísmo Circular , Escherichia coli/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Membranas/química , Peptídeos/química , Peptídeos/farmacologia , Salmonella enterica/efeitos dos fármacos , Relação Estrutura-Atividade , beta-Defensinas/síntese química , beta-Defensinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA