Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Oral Health ; 23(1): 25, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650512

RESUMO

BACKGROUND: The stiffness of titanium mesh is a double-blade sword to repair larger alveolar ridges defect with excellent space maintenance ability, while invade the surrounding soft tissue and lead to higher mesh exposure rates. Understanding the mechanical of oral mucosa/titanium mesh/bone interface is clinically meaningful. In this study, the above relationship was analyzed by finite elements and verified by setting different keratinized tissue width in oral mucosa. METHODS: Two three-dimensional finite element models were constructed with 5 mm keratinized tissue in labial mucosa (KM cases) and 0 mm keratinized tissue in labial mucosa (LM cases). Each model was composed of titanium mesh, titanium screws, graft materials, bone, teeth and oral mucosa. After that, a vertical (30 N) loadings were applied from both alveolar ridges direction and labial mucosa direction to stimulate the force from masticatory system. The displacements and von Mises stress of each element at the interfaces were analyzed. RESULTS: Little displacements were found for titanium mesh, titanium screws, graft materials, bone and teeth in both LM and KM cases under different loading conditions. The maximum von Mises stress was found around the lingual titanium screw insertion place for those elements in all cases. The keratinized tissue decreased the displacement of oral mucosa, decreased the maximum von Mises stress generated by an alveolar ridges direction load, while increased those stress from labial mucosa direction load. Only the von Mises stress of the KM cases was all lower than the tensile strength of the oral mucosa. CONCLUSION: The mucosa was vulnerable under the increasing stress generated by the force from masticatory system. The adequate buccal keratinized mucosa width are critical factors in reducing the stress beyond the titanium mesh, which might reduce the titanium exposure rate.


Assuntos
Mucosa Bucal , Titânio , Humanos , Estresse Mecânico , Análise de Elementos Finitos , Mucosa Bucal/cirurgia , Telas Cirúrgicas/efeitos adversos
2.
Macromol Biosci ; 23(10): e2300067, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37229654

RESUMO

There is great clinical demand for orthopedic and dental implant surface modification methods to prevent osseointegration failure and improve implant biological functions. Notably, dopamine (DA) can be polymerized to form polydopamine (PDA), which is similar to the adhesive proteins secreted by mussels, to form a stable bond between the bone surface and implants. Therefore, PDA has the potential to be used as an implant surface modification material with good hydrophilicity, roughness, morphology, mechanical strength, biocompatibility, antibacterial activity, cellular adhesion, and osteogenesis. In addition, PDA degradation releases DA into the surrounding microenvironment, which is found to play an important role in regulating DA receptors on both osteoblasts and osteoclasts during the bone remodeling process. Furthermore, the adhesion properties of PDA suggest its use as an intermediate layer in assisting other functional bone remodeling materials, such as nanoparticles, growth factors, peptides, and hydrogels, to form "dual modifications." The purpose of this review is to summarize the recent progress in research on PDA and its derivatives as orthopedic and dental implant surface modification materials and to analyze the multiple functions of PDA.

3.
Head Face Med ; 19(1): 14, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37038160

RESUMO

OBJECTIVE: This study aimed to study the cytokines in gingival crevicular fluid (GCF) of the teeth opposing to dental implants and 3-unit fixed partial dentures (FPDs). MATERIALS AND METHODS: A total of 74 participants were recruited for this cross-sectional study. Based on the status of lower first molars, the participants were divided into dental implants group and 3-unit FPDs group. Social index and oral hygiene were recorded. Occlusal loading was evaluated with a T-scan. GCF was sampled from the upper first molar and assessed with a commercial cytokine assay kit. RESULTS: Forty three dental implants patients and 31 3-unit FPDs patients received all of the clinical and laboratory evaluation. The dental implants group had a higher occlusion force distribution on first molars region. IL-10, IL-17, RANK had a higher mean in dental implants group and was associated with occlusion force of first molar. There was a weakly association between IL-10 and dental implants in the binary logistic regression analyses. CONCLUSIONS: In this study, the teeth opposing implants have a higher level of cytokines in the GCF than teeth opposing to 3-unit FPDs in periodontal healthy participants because of the poor osseoperception of dental implants. IL-10 might reflect a higher occlusion force in dental implants region. CLINICAL RELEVANCE: This study provided that different tooth restoration methods could influence the periodontal status of the contact teeth.


Assuntos
Citocinas , Implantes Dentários , Humanos , Citocinas/análise , Interleucina-10/análise , Líquido do Sulco Gengival/química , Estudos Transversais , Prótese Parcial Fixa
4.
Int J Implant Dent ; 7(1): 56, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34180039

RESUMO

PURPOSE: Osseointegration at the titanium surface-bone interface is one of the key factors affecting the success rate of dental implants. However, the titanium surface always forms a passive oxide layer and impacts bone marrow-derived mesenchymal stem cell (BMSC) osteogenic differentiation after exposure to the atmosphere, which further leads to poor osseointegration. Given that wet storage helps prevent titanium aging and that weakly alkaline conditions stimulate BMSC osteogenic differentiation, the aim of the present study was to explore whether sodium bicarbonate, a well-known hydrogen ion (pH) buffer, forms an alkaline microenvironment on titanium surfaces to promote BMSC osteogenic differentiation. MATERIAL AND METHODS: In this work, sand-blasted and acid-etched (SLA) titanium discs were soaked in 20 mM, 50 mM, 100 mM, and 200 mM sodium bicarbonate at room temperature for 5 min without rinsing. The influence of this surface modification on BMSC adhesion, proliferation, and osteogenic differentiation was measured. Additionally, cellular osteogenic differentiation-associated signaling pathways were evaluated. RESULTS: We showed that titanium discs treated with sodium bicarbonate created an extracellular environment with a higher pH for BMSCs than the normal physiological value for 5 days, strongly promoting BMSC osteogenic differentiation via the activation of integrin-focal adhesion kinase-alkaline phosphatase (Itg-FAK-ALP). In addition, the proliferation and adhesion of BMSCs were increased after alkaline treatment. These cellular effects were most significant with 100 mM sodium bicarbonate. CONCLUSION: The results indicated that the titanium surface treated with sodium bicarbonate improved BMSC osteogenic differentiation mainly by creating an alkaline microenvironment, which further activated the Itg-FAK-ALP signaling pathway. CLINICAL RELEVANCE: Surfaces modified with 100 mM sodium bicarbonate had the highest initial pH value and thus showed the greatest potential to improve BMSC performance on titanium surfaces, identifying a novel conservation method for dental implants.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Fosfatase Alcalina , Humanos , Propriedades de Superfície , Titânio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA