Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 157: 106646, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981181

RESUMO

Graphene oxide (GO) exhibits excellent mechanical strength and modulus. However, its effectiveness in mechanically reinforcing polymer materials is limited due to issues with interfacial bonding and dispersion arising from differences in the physicochemical properties between GO and polymers. Surface modification using coupling agents is an effective method to improve the bonding problem between polymer and GO, but there may be biocompatibility issues when used in the biomedical field. In this study, the biomolecule L-lysine, was applied to improve the interfacial bonding and dispersion of GO in polylactic acid (PLA) without compromising biocompatibility. The PLA/L-lysine-modified GO (PLA/L-GO) bone scaffold with triply periodic minimal surface (TPMS) structure was prepared using fused deposition modeling (FDM). The FTIR results revealed successful grafting of L-lysine onto GO through the reaction between their -COOH and -NH2 groups. The macroscopic and microscopic morphology characterization indicated that the PLA/L-GO scaffolds exhibited an characteristics of dynamic diameter changes, with good interlayer bonding. It was noteworthy that the L-lysine modification promoted the dispersion of GO and the interfacial bonding with the PLA matrix, as characterized by SEM. As a result, the PLA/0.1L-GO scaffold exhibited higher compressive strength (13.2 MPa) and elastic modulus (226.8 MPa) than PLA/0.1GO. Moreover, PLA/L-GO composite scaffold exhibited superior biomineralization capacity and cell response compared to PLA/GO. In summary, L-lysine not only improved the dispersion and interfacial bonding of GO with PLA, enhancing the mechanical properties, but also improved the biological properties. This study suggests that biomolecules like L-lysine may replace traditional modifiers as an innovative bio-modifier to improve the performance of polymer/inorganic composite biomaterials.


Assuntos
Grafite , Lisina , Teste de Materiais , Fenômenos Mecânicos , Poliésteres , Impressão Tridimensional , Alicerces Teciduais , Poliésteres/química , Alicerces Teciduais/química , Porosidade , Grafite/química , Lisina/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Animais
2.
J Mech Behav Biomed Mater ; 142: 105848, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37099921

RESUMO

Bone scaffolds should have good biocompatibility and mechanical and biological properties, which are primarily by the material design, porous structure, and preparation process. In this study, we proposed polylactic acid (PLA) as the base material, graphene oxide (GO) as an enhancing filler, triply periodic minimal surface (TPMS) as a porous structure, and fused deposition modeling (FDM) 3D printing as a preparation technology to develop a TPMS structural PLA/GO scaffold and evaluate their porous structures, mechanical properties, and biological properties towards bone tissue engineering. Firstly, the influence of the FDM 3D printing process parameters on the forming quality and mechanical properties of PLA was studied by orthogonal experimental design, based on which the process parameters were optimized. Then, GO was composited with PLA, and PLA/GO nanocomposites were prepared by FDM. The mechanical tests showed that GO can effectively improve the tensile and compression strength of PLA; only by adding 0.1% GO the tensile and compression modulus was increased by 35.6% and 35.8%, respectively. Then, TPMS structural (Schwarz-P, Gyroid) scaffold models were designed and TPMS structural PLA/0.1%GO nanocomposite scaffolds were prepared by FDM. The compression test showed that the TPMS structural scaffolds had higher compression strength than the Grid structure; This was owing to the fact that the continuous curved structure of TMPS alleviated stress concentration and had a more uniform stress bearing. Moreover, cell culture indicated bone marrow stromal cells (BMSCs) showed better adhesion, proliferation, and osteogenic differentiation behaviors on the TPMS structural scaffolds as the continuous surface structure of TPMS had better connectivity and larger specific surface area. These results suggest that the TPMS structural PLA/GO scaffold has potential application in bone repair. This article suggests the feasibility of co-designing the material, structure, and technology for achieving the good comprehensive performance of polymer bone scaffolds.


Assuntos
Osteogênese , Alicerces Teciduais , Alicerces Teciduais/química , Porosidade , Engenharia Tecidual/métodos , Poliésteres/química , Impressão Tridimensional
3.
Int J Biol Macromol ; 242(Pt 1): 124728, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150372

RESUMO

Polylactic acid (PLA) has been extensively used as a bone scaffold material, but it still faces many problems including low biomineralization ability, weak cell response, low mechanical properties, etc. In this study, we proposed to utilize the distinctive physical, chemical and biological properties of a natural biomineral with organic matrix, pearl powder, to enhance the overall performance of PLA bone scaffolds. Porous PLA/pearl composite bone scaffolds were prepared using fused deposition modeling (FDM) 3D printing technology, and their comprehensive performance was investigated. Macro- and micro- morphological observation by the optical camera and scanning electron microscopy (SEM) showed the 3D printed scaffolds have interconnected and ordered periodic porous structures. Phase analysis by X-ray diffraction (XRD) indicated pearl powder was well composited with PLA without impurity formation during the melt extrusion process. The mechanical test results indicated the tensile and compressive strength of PLA/pearl composite scaffolds with 10 % pearl powder content yielded the highest values, which were 15.5 % and 21.8% greater than pure PLA, respectively. The water contact angle and water absorption tests indicated that PLA/pearl showed better hydrophilicity than PLA due to the presence of polar groups in the organic matrix of the pearl powder. The results of the simulated body fluid (SBF) soaking revealed that the addition of pearl powder effectively enhanced the formation and deposition of apatite, which was attributed to the release of Ca2+ from the dissolution of pearl powder. The cell culture of bone marrow mesenchymal stem cells (BMSCs) indicated that PLA/pearl scaffolds showed better cell proliferation and osteogenic differentiation than PLA due to the stimulation of the biological organic matrix in pearl powder. These outcomes signify the potential of pearl powder as a natural biomineral containing bio-signal factors to improve the mechanical and biological properties of polymers for better bone tissue engineering application.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Osteogênese , Biomineralização , Poliésteres/farmacologia , Poliésteres/química , Engenharia Tecidual/métodos , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA