Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 29(31)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28612952

RESUMO

To meet the increasing demands for ultrasensitivity in monitoring trace amounts of low-abundance early biomarkers or environmental toxins, the development of a robust sensing system is urgently needed. Here, a novel signal cascade strategy is reported via an ultrasensitive polymeric sensing system (UPSS) composed of gold nanoparticle (gNP)-decorated polymer, which enables gNP aggregation in polymeric network and electrical conductance change upon specific aptamer-based biomolecular recognition. Ultralow concentrations of thrombin (10-18 m) as well as a low molecular weight anatoxin (165 Da, 10-14 m) are detected selectively and reproducibly. The biomolecular recognition induced polymeric network shrinkage responses as well as dose-dependent responses of the UPSS are validated using in situ real-time atomic-force microscopy, representing the first instance of real-time detection of biomolecular binding-induced polymer shrinkage in soft matter. Furthermore, in situ real-time confocal laser scanning microscopy imaging reveals the dynamic process of gNP aggregation responses upon biomolecular binding.


Assuntos
Nanopartículas Metálicas , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ouro , Polímeros , Trombina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA